WeThink: Toward General-purpose Vision-Language Reasoning via Reinforcement Learning
- URL: http://arxiv.org/abs/2506.07905v1
- Date: Mon, 09 Jun 2025 16:20:54 GMT
- Title: WeThink: Toward General-purpose Vision-Language Reasoning via Reinforcement Learning
- Authors: Jie Yang, Feipeng Ma, Zitian Wang, Dacheng Yin, Kang Rong, Fengyun Rao, Ruimao Zhang,
- Abstract summary: Building on the success of text-based reasoning models like DeepSeek-R1, extending these capabilities to multimodal reasoning holds great promise.<n>In this paper, we show how to achieve the general-purpose visual-language reasoning through reinforcement learning.
- Score: 17.459985667824807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building on the success of text-based reasoning models like DeepSeek-R1, extending these capabilities to multimodal reasoning holds great promise. While recent works have attempted to adapt DeepSeek-R1-style reinforcement learning (RL) training paradigms to multimodal large language models (MLLM), focusing on domain-specific tasks like math and visual perception, a critical question remains: How can we achieve the general-purpose visual-language reasoning through RL? To address this challenge, we make three key efforts: (1) A novel Scalable Multimodal QA Synthesis pipeline that autonomously generates context-aware, reasoning-centric question-answer (QA) pairs directly from the given images. (2) The open-source WeThink dataset containing over 120K multimodal QA pairs with annotated reasoning paths, curated from 18 diverse dataset sources and covering various question domains. (3) A comprehensive exploration of RL on our dataset, incorporating a hybrid reward mechanism that combines rule-based verification with model-based assessment to optimize RL training efficiency across various task domains. Across 14 diverse MLLM benchmarks, we demonstrate that our WeThink dataset significantly enhances performance, from mathematical reasoning to diverse general multimodal tasks. Moreover, we show that our automated data pipeline can continuously increase data diversity to further improve model performance.
Related papers
- Advancing Multimodal Reasoning: From Optimized Cold Start to Staged Reinforcement Learning [28.92744927199283]
ReVisual-R1 achieves a new state-of-the-art among open-source 7B MLLMs on challenging benchmarks including MathVerse, MathVision, WeMath, LogicVista, DynaMath, and challenging AIME2024 and AIME2025.
arXiv Detail & Related papers (2025-06-04T17:51:08Z) - General-Reasoner: Advancing LLM Reasoning Across All Domains [64.70599911897595]
Reinforcement learning (RL) has recently demonstrated strong potential in enhancing the reasoning capabilities of large language models (LLMs)<n>We propose General-Reasoner, a novel training paradigm designed to enhance LLM reasoning capabilities across diverse domains.<n>We train a series of models and evaluate them on a wide range of datasets covering wide domains like physics, chemistry, finance, electronics etc.
arXiv Detail & Related papers (2025-05-20T17:41:33Z) - Observe-R1: Unlocking Reasoning Abilities of MLLMs with Dynamic Progressive Reinforcement Learning [3.364797975300393]
We present Observe-R1, a novel framework aimed at enhancing the reasoning capabilities of multimodal large language models (MLLMs)<n>We construct the NeuraLadder dataset, which is organized and sampled according to the difficulty and complexity of data samples for RL training.<n>Experiments with the Qwen2.5-VL-3B and Qwen2.5-VL-7B models on 20k samples from the NeuraLadder dataset show that Observe-R1 outperforms a series of larger reasoning models on both reasoning and general benchmarks.
arXiv Detail & Related papers (2025-05-18T14:08:03Z) - Reinforced MLLM: A Survey on RL-Based Reasoning in Multimodal Large Language Models [22.796496516709514]
This paper provides a systematic review of recent advances in reinforcement learning (RL)-based reasoning for Multimodal Large Language Models (MLLMs)<n>We highlight two main RL paradigms, value-model-free and value-model-based methods, and analyze how RL enhances reasoning abilities by optimizing reasoning trajectories and aligning multimodal information.<n>We provide an extensive overview of benchmark datasets, evaluation protocols, and current limitations, and propose future research directions to address challenges such as sparse rewards, inefficient cross-modal reasoning, and real-world deployment constraints.
arXiv Detail & Related papers (2025-04-30T03:14:28Z) - Exploring the Effect of Reinforcement Learning on Video Understanding: Insights from SEED-Bench-R1 [53.894789613838654]
We introduce SEED-Bench-R1, a benchmark designed to evaluate post-training methods for MLLMs in video understanding.<n>It includes intricate real-world videos and complex everyday planning tasks in the format of multiple-choice questions.<n>Using Qwen2-VL-Instruct-7B as a base model, we compare RL with supervised fine-tuning (SFT)<n>Our detailed analysis reveals that RL enhances visual perception but often produces less coherent reasoning chains.
arXiv Detail & Related papers (2025-03-31T17:55:23Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)<n>We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.<n>OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - OThink-MR1: Stimulating multimodal generalized reasoning capabilities via dynamic reinforcement learning [29.053899071144976]
We propose OThink-MR1, an advanced MLLM equipped with profound comprehension and reasoning capabilities across multimodal tasks.<n>Specifically, we introduce Group Relative Policy Optimization with a dynamic Kullback-Leibler strategy.<n> GRPO-D achieves a relative improvement of more than 5.72% over SFT and more than 13.59% over GRPO in same-task evaluation.
arXiv Detail & Related papers (2025-03-20T12:22:18Z) - MM-Eureka: Exploring the Frontiers of Multimodal Reasoning with Rule-based Reinforcement Learning [55.82649731348012]
We introduce the MMK12 dataset and MM-EUREKA with 7B and 32B parameters.<n>The former is a high-quality multimodal mathematics reasoning dataset featuring diverse knowledge domains with human-verified answers and solution processes.<n>The latter is a multimodal model employing rule-based reinforcement learning utilizing online filtering and two-stage training strategy to enhance training stability.
arXiv Detail & Related papers (2025-03-10T14:23:12Z) - Vision-R1: Incentivizing Reasoning Capability in Multimodal Large Language Models [24.45348222168512]
We propose the reasoning MLLM, Vision-R1, to improve multimodal reasoning capability.<n>Our model achieves an average improvement of $sim$6% across various multimodal math reasoning benchmarks.<n>Vision-R1-7B achieves a 73.5% accuracy on the widely used MathVista benchmark, which is only 0.4% lower than the leading reasoning model, OpenAI O1.
arXiv Detail & Related papers (2025-03-09T20:06:45Z) - Progressive Multimodal Reasoning via Active Retrieval [64.74746997923967]
Multi-step multimodal reasoning tasks pose significant challenges for large language models (MLLMs)<n>We propose AR-MCTS, a universal framework designed to progressively improve the reasoning capabilities of MLLMs.<n>We show that AR-MCTS can optimize sampling diversity and accuracy, yielding reliable multimodal reasoning.
arXiv Detail & Related papers (2024-12-19T13:25:39Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.<n>Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.<n>We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - Insight-V: Exploring Long-Chain Visual Reasoning with Multimodal Large Language Models [64.1799100754406]
Large Language Models (LLMs) demonstrate enhanced capabilities and reliability by reasoning more.<n>Despite various efforts to improve LLM reasoning, high-quality long-chain reasoning data and optimized training pipelines still remain inadequately explored in vision-language tasks.<n>We present Insight-V, an early effort to 1) scalably produce long and robust reasoning data for complex multi-modal tasks, and 2) an effective training pipeline to enhance the reasoning capabilities of MLLMs.
arXiv Detail & Related papers (2024-11-21T18:59:55Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.