BridgeVLA: Input-Output Alignment for Efficient 3D Manipulation Learning with Vision-Language Models
- URL: http://arxiv.org/abs/2506.07961v1
- Date: Mon, 09 Jun 2025 17:36:34 GMT
- Title: BridgeVLA: Input-Output Alignment for Efficient 3D Manipulation Learning with Vision-Language Models
- Authors: Peiyan Li, Yixiang Chen, Hongtao Wu, Xiao Ma, Xiangnan Wu, Yan Huang, Liang Wang, Tao Kong, Tieniu Tan,
- Abstract summary: BridgeVLA is a novel 3D VLA model that projects 3D inputs to multiple 2D images, ensuring input alignment with the VLM backbone.<n>It utilizes 2D heatmaps for action prediction, unifying the input and output spaces within a consistent 2D image space.<n>It is able to achieve a success rate of 96.8% on 10+ tasks with only 3 trajectories per task, highlighting its extraordinary sample efficiency.
- Score: 48.81848689570674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, leveraging pre-trained vision-language models (VLMs) for building vision-language-action (VLA) models has emerged as a promising approach to effective robot manipulation learning. However, only few methods incorporate 3D signals into VLMs for action prediction, and they do not fully leverage the spatial structure inherent in 3D data, leading to low sample efficiency. In this paper, we introduce BridgeVLA, a novel 3D VLA model that (1) projects 3D inputs to multiple 2D images, ensuring input alignment with the VLM backbone, and (2) utilizes 2D heatmaps for action prediction, unifying the input and output spaces within a consistent 2D image space. In addition, we propose a scalable pre-training method that equips the VLM backbone with the capability to predict 2D heatmaps before downstream policy learning. Extensive experiments show the proposed method is able to learn 3D manipulation efficiently and effectively. BridgeVLA outperforms state-of-the-art baseline methods across three simulation benchmarks. In RLBench, it improves the average success rate from 81.4% to 88.2%. In COLOSSEUM, it demonstrates significantly better performance in challenging generalization settings, boosting the average success rate from 56.7% to 64.0%. In GemBench, it surpasses all the comparing baseline methods in terms of average success rate. In real-robot experiments, BridgeVLA outperforms a state-of-the-art baseline method by 32% on average. It generalizes robustly in multiple out-of-distribution settings, including visual disturbances and unseen instructions. Remarkably, it is able to achieve a success rate of 96.8% on 10+ tasks with only 3 trajectories per task, highlighting its extraordinary sample efficiency. Project Website:https://bridgevla.github.io/
Related papers
- DINeMo: Learning Neural Mesh Models with no 3D Annotations [7.21992608540601]
Category-level 3D/6D pose estimation is a crucial step towards comprehensive 3D scene understanding.<n>Recent works explored neural mesh models that approach a range of 2D and 3D tasks from an analysis-by-synthesis perspective.<n>We present DINeMo, a novel neural mesh model that is trained with no 3D annotations by leveraging pseudo-correspondence.
arXiv Detail & Related papers (2025-03-26T04:23:53Z) - PointVLA: Injecting the 3D World into Vision-Language-Action Models [10.758939578236582]
We propose PointVLA, a framework that enhances pre-trained vision-language-action models with point cloud inputs without requiring retraining.<n>Our method freezes the vanilla action expert and injects 3D features via a lightweight modular block.<n>PointVLA outperforms state-of-the-art 2D imitation learning methods across both simulated and real-world robotic tasks.
arXiv Detail & Related papers (2025-03-10T16:32:41Z) - Fine-Tuning Vision-Language-Action Models: Optimizing Speed and Success [100.226572152954]
We present an optimized fine-tuning recipe for vision-language-action models (VLAs)<n>Our recipe boosts OpenVLA's average success rate across four task suites from 76.5% to 97.1% while increasing action generation throughput by 26$times$.<n>In real-world evaluations, our fine-tuning recipe enables OpenVLA to successfully execute dexterous, high-frequency control tasks on a bimanual ALOHA robot.
arXiv Detail & Related papers (2025-02-27T00:30:29Z) - HAMSTER: Hierarchical Action Models For Open-World Robot Manipulation [54.03004125910057]
We show that hierarchical vision-language-action models can be more effective in utilizing off-domain data than standard monolithic VLA models.<n>We show that, with the hierarchical design, the high-level VLM can transfer across significant domain gaps between the off-domain finetuning data and real-robot testing scenarios.
arXiv Detail & Related papers (2025-02-08T07:50:22Z) - CogACT: A Foundational Vision-Language-Action Model for Synergizing Cognition and Action in Robotic Manipulation [100.25567121604382]
Vision-Language-Action (VLA) models have improved robotic manipulation in terms of language-guided task execution and generalization to unseen scenarios.<n>We present a new advanced VLA architecture derived from Vision-Language-Models (VLM)<n>We show that our model not only significantly surpasses existing VLAs in task performance and but also exhibits remarkable adaptation to new robots and generalization to unseen objects and backgrounds.
arXiv Detail & Related papers (2024-11-29T12:06:03Z) - Semi-supervised 3D Semantic Scene Completion with 2D Vision Foundation Model Guidance [8.07701188057789]
We introduce a novel semi-supervised framework to alleviate the dependency on densely annotated data.<n>Our approach leverages 2D foundation models to generate essential 3D scene geometric and semantic cues.<n>Our method achieves up to 85% of the fully-supervised performance using only 10% labeled data.
arXiv Detail & Related papers (2024-08-21T12:13:18Z) - CALICO: Self-Supervised Camera-LiDAR Contrastive Pre-training for BEV
Perception [32.91233926771015]
CALICO is a novel framework that applies contrastive objectives to both LiDAR and camera backbones.
Our framework can be tailored to different backbones and heads, positioning it as a promising approach for multimodal BEV perception.
arXiv Detail & Related papers (2023-06-01T05:06:56Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z) - 2nd Place Scheme on Action Recognition Track of ECCV 2020 VIPriors
Challenges: An Efficient Optical Flow Stream Guided Framework [57.847010327319964]
We propose a data-efficient framework that can train the model from scratch on small datasets.
Specifically, by introducing a 3D central difference convolution operation, we proposed a novel C3D neural network-based two-stream framework.
It is proved that our method can achieve a promising result even without a pre-trained model on large scale datasets.
arXiv Detail & Related papers (2020-08-10T09:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.