Instruction-Tuned Video-Audio Models Elucidate Functional Specialization in the Brain
- URL: http://arxiv.org/abs/2506.08277v1
- Date: Mon, 09 Jun 2025 22:48:36 GMT
- Title: Instruction-Tuned Video-Audio Models Elucidate Functional Specialization in the Brain
- Authors: Subba Reddy Oota, Khushbu Pahwa, Prachi Jindal, Satya Sai Srinath Namburi, Maneesh Singh, Tanmoy Chakraborty, Bapi S. Raju, Manish Gupta,
- Abstract summary: multimodal large language models (MLLMs) exhibit a higher degree of brain alignment compared to unimodal models.<n>We show that instruction-tuned video MLLMs significantly outperform non-instruction-tuned multimodal and unimodal models.<n>Our evaluation of MLLMs for both video and audio tasks using language-guided instructions shows clear disentanglement in task-specific representations from MLLMs.
- Score: 25.98830728450583
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent voxel-wise multimodal brain encoding studies have shown that multimodal large language models (MLLMs) exhibit a higher degree of brain alignment compared to unimodal models in both unimodal and multimodal stimulus settings. More recently, instruction-tuned multimodal models have shown to generate task-specific representations that align strongly with brain activity. However, prior work evaluating the brain alignment of MLLMs has primarily focused on unimodal settings or relied on non-instruction-tuned multimodal models for multimodal stimuli. To address this gap, we investigated brain alignment, that is, measuring the degree of predictivity of neural activity recorded while participants were watching naturalistic movies (video along with audio) with representations derived from MLLMs. We utilized instruction-specific embeddings from six video and two audio instruction-tuned MLLMs. Experiments with 13 video task-specific instructions show that instruction-tuned video MLLMs significantly outperform non-instruction-tuned multimodal (by 15%) and unimodal models (by 20%). Our evaluation of MLLMs for both video and audio tasks using language-guided instructions shows clear disentanglement in task-specific representations from MLLMs, leading to precise differentiation of multimodal functional processing in the brain. We also find that MLLM layers align hierarchically with the brain, with early sensory areas showing strong alignment with early layers, while higher-level visual and language regions align more with middle to late layers. These findings provide clear evidence for the role of task-specific instructions in improving the alignment between brain activity and MLLMs, and open new avenues for mapping joint information processing in both the systems. We make the code publicly available [https://github.com/subbareddy248/mllm_videos].
Related papers
- Advancing Multimodal Reasoning Capabilities of Multimodal Large Language Models via Visual Perception Reward [87.06604760273372]
We propose Perception-R1, which introduces a novel visual perception reward that explicitly encourages MLLMs to perceive the visual content accurately.<n>We show that Perception-R1 achieves state-of-the-art performance on most benchmarks using only 1,442 training data.
arXiv Detail & Related papers (2025-06-08T16:48:42Z) - Correlating instruction-tuning (in multimodal models) with vision-language processing (in the brain) [22.244699182222824]
Transformer-based language models, though not explicitly trained to mimic brain recordings, have demonstrated surprising alignment with brain activity.<n>Recently, a new class of instruction-tuned multimodal LLMs have emerged, showing remarkable zero-shot capabilities in open-ended multimodal vision tasks.<n>We investigate whether MLLMs, when prompted with natural instructions, lead to better brain alignment and effectively capture instruction-specific representations.
arXiv Detail & Related papers (2025-05-26T14:18:15Z) - InternVideo2.5: Empowering Video MLLMs with Long and Rich Context Modeling [56.130911402831906]
This paper aims to improve the performance of video large language models (LM) via long and rich context (LRC) modeling.<n>We develop a new version of InternVideo2.5 with focus on enhancing the original MLLMs' ability to perceive fine-grained details in videos.<n> Experimental results demonstrate this unique designML LRC greatly improves the results of video MLLM in mainstream understanding benchmarks.
arXiv Detail & Related papers (2025-01-21T18:59:00Z) - Weakly Supervised Temporal Action Localization via Dual-Prior Collaborative Learning Guided by Multimodal Large Language Models [33.37379526356273]
We introduce a novel learning paradigm termed MLLM4WTAL.<n>It harnesses the potential of MLLM to offer temporal action key semantics and complete semantic priors.<n>It achieves this by integrating two distinct modules: Key Semantic Matching (KSM) and Complete Semantic Reconstruction (CSR)
arXiv Detail & Related papers (2024-11-13T09:37:24Z) - Order Matters: Exploring Order Sensitivity in Multimodal Large Language Models [15.622219099903067]
We find that changing the order of multimodal input can cause the model's performance to fluctuate between advanced performance and random guessing.
This phenomenon exists in both single-modality (text-only or image-only) and mixed-modality (image-text-pair) contexts.
We propose a new metric, Position-Invariant Accuracy (PIA), to address order bias in MLLM evaluation.
arXiv Detail & Related papers (2024-10-22T13:05:11Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Dense Connector for MLLMs [89.50595155217108]
We introduce the Dense Connector - a plug-and-play vision-language connector that significantly enhances existing MLLMs.
Building on this, we also propose the Efficient Dense Connector, which achieves performance comparable to LLaVA-v1.5 with only 25% of the visual tokens.
Our model, trained solely on images, showcases remarkable zero-shot capabilities in video understanding as well.
arXiv Detail & Related papers (2024-05-22T16:25:03Z) - Mipha: A Comprehensive Overhaul of Multimodal Assistant with Small Language Models [25.724995114710165]
We investigate the design aspects of Multimodal Small Language Models (MSLMs) and propose an efficient multimodal assistant named Mipha.
Our Mipha-3B outperforms the state-of-the-art large MLLMs, especially LLaVA-1.5-13B, on multiple benchmarks.
arXiv Detail & Related papers (2024-03-10T12:43:27Z) - ModaVerse: Efficiently Transforming Modalities with LLMs [25.49713745405194]
We introduce ModaVerse, a Multi-modal Large Language Model capable of comprehending and transforming content across various modalities.
We propose a novel Input/Output (I/O) alignment mechanism that operates directly at the level of natural language.
arXiv Detail & Related papers (2024-01-12T06:28:54Z) - Holistic Autonomous Driving Understanding by Bird's-Eye-View Injected
Multi-Modal Large Models [76.99140362751787]
We present NuInstruct, a novel dataset with 91K multi-view video-QA pairs across 17 subtasks.
We also present BEV-InMLLM, an end-to-end method for efficiently deriving instruction-aware Bird's-Eye-View features.
arXiv Detail & Related papers (2024-01-02T01:54:22Z) - LION : Empowering Multimodal Large Language Model with Dual-Level Visual
Knowledge [58.82222646803248]
Multimodal Large Language Models (MLLMs) have endowed LLMs with the ability to perceive and understand multi-modal signals.
Most of the existing MLLMs mainly adopt vision encoders pretrained on coarsely aligned image-text pairs, leading to insufficient extraction and reasoning of visual knowledge.
We propose a dual-Level vIsual knedgeOwl eNhanced Multimodal Large Language Model (LION), which empowers the MLLM by injecting visual knowledge in two levels.
arXiv Detail & Related papers (2023-11-20T15:56:44Z) - VideoLLM: Modeling Video Sequence with Large Language Models [70.32832021713864]
Existing video understanding models are often task-specific and lack a comprehensive capability of handling diverse tasks.
We propose a novel framework called VideoLLM that leverages the sequence reasoning capabilities of pre-trained LLMs.
VideoLLM incorporates a carefully designed Modality and Semantic Translator, which convert inputs from various modalities into a unified token sequence.
arXiv Detail & Related papers (2023-05-22T17:51:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.