TS-PIELM: Time-Stepping Physics-Informed Extreme Learning Machine Facilitates Soil Consolidation Analyses
- URL: http://arxiv.org/abs/2506.08381v2
- Date: Wed, 11 Jun 2025 03:02:30 GMT
- Title: TS-PIELM: Time-Stepping Physics-Informed Extreme Learning Machine Facilitates Soil Consolidation Analyses
- Authors: He Yang, Fei Ren, Hai-Sui Yu, Xueyu Geng, Pei-Zhi Zhuang,
- Abstract summary: The accuracy and efficiency of the conventional physics-informed neural network (PINN) need to be improved before it can be a competitive alternative for soil consolidation analyses.<n>This paper proposes a highly accurate and efficient physics-informed machine learning (PIML) approach, termed time-stepping physics-informed extreme learning machine (TS-PIELM)<n>Compared to PINN, results show that the computational efficiency and accuracy of the novel TS-PIELM framework are improved by more than 1000 times and 100 times for one-dimensional cases.
- Score: 2.691975354384293
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accuracy and efficiency of the conventional physics-informed neural network (PINN) need to be improved before it can be a competitive alternative for soil consolidation analyses. This paper aims to overcome these limitations by proposing a highly accurate and efficient physics-informed machine learning (PIML) approach, termed time-stepping physics-informed extreme learning machine (TS-PIELM). In the TS-PIELM framework the consolidation process is divided into numerous time intervals, which helps overcome the limitation of PIELM in solving differential equations with sharp gradients. To accelerate network training, the solution is approximated by a single-layer feedforward extreme learning machine (ELM), rather than using a fully connected neural network in PINN. The input layer weights of the ELM network are generated randomly and fixed during the training process. Subsequently, the output layer weights are directly computed by solving a system of linear equations, which significantly enhances the training efficiency compared to the time-consuming gradient descent method in PINN. Finally, the superior performance of TS-PIELM is demonstrated by solving three typical Terzaghi consolidation problems. Compared to PINN, results show that the computational efficiency and accuracy of the novel TS-PIELM framework are improved by more than 1000 times and 100 times for one-dimensional cases, respectively. This paper provides compelling evidence that PIML can be a powerful tool for computational geotechnics.
Related papers
- Decentralized Nonconvex Composite Federated Learning with Gradient Tracking and Momentum [78.27945336558987]
Decentralized server (DFL) eliminates reliance on client-client architecture.<n>Non-smooth regularization is often incorporated into machine learning tasks.<n>We propose a novel novel DNCFL algorithm to solve these problems.
arXiv Detail & Related papers (2025-04-17T08:32:25Z) - DiffGrad for Physics-Informed Neural Networks [0.0]
Burgers' equation, a fundamental equation in fluid dynamics that is extensively used in PINNs, provides flexible results with the Adamprop.
This paper introduces a novel strategy for solving Burgers' equation by incorporating DiffGrad with PINNs.
arXiv Detail & Related papers (2024-09-05T04:39:35Z) - Fast Cerebral Blood Flow Analysis via Extreme Learning Machine [4.373558495838564]
We introduce a rapid and precise analytical approach for analyzing cerebral blood flow (CBF) using Diffuse Correlation spectroscopy (DCS)
We assess existing algorithms using synthetic datasets for both semi-infinite and multi-layer models.
Results demonstrate that ELM consistently achieves higher fidelity across various noise levels and optical parameters, showcasing robust generalization ability and outperforming iterative fitting algorithms.
arXiv Detail & Related papers (2024-01-10T23:01:35Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - A Sequential Meta-Transfer (SMT) Learning to Combat Complexities of
Physics-Informed Neural Networks: Application to Composites Autoclave
Processing [1.6317061277457001]
PINNs have gained popularity in solving nonlinear partial differential equations.
PINNs are designed to approximate a specific realization of a given PDE system.
They lack the necessary generalizability to efficiently adapt to new system configurations.
arXiv Detail & Related papers (2023-08-12T02:46:54Z) - Efficient Parallel Split Learning over Resource-constrained Wireless
Edge Networks [44.37047471448793]
In this paper, we advocate the integration of edge computing paradigm and parallel split learning (PSL)
We propose an innovative PSL framework, namely, efficient parallel split learning (EPSL) to accelerate model training.
We show that the proposed EPSL framework significantly decreases the training latency needed to achieve a target accuracy.
arXiv Detail & Related papers (2023-03-26T16:09:48Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Self-learning locally-optimal hypertuning using maximum entropy, and
comparison of machine learning approaches for estimating fatigue life in
composite materials [0.0]
We develop an ML nearest-neighbors-alike algorithm based on the principle of maximum entropy to predict fatigue damage.
The predictions achieve a good level of accuracy, similar to other ML algorithms.
arXiv Detail & Related papers (2022-10-19T12:20:07Z) - Accelerating Federated Edge Learning via Topology Optimization [41.830942005165625]
Federated edge learning (FEEL) is envisioned as a promising paradigm to achieve privacy-preserving distributed learning.
It consumes excessive learning time due to the existence of straggler devices.
A novel topology-optimized federated edge learning (TOFEL) scheme is proposed to tackle the heterogeneity issue in federated learning.
arXiv Detail & Related papers (2022-04-01T14:49:55Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.