SHIELD: Multi-task Multi-distribution Vehicle Routing Solver with Sparsity and Hierarchy
- URL: http://arxiv.org/abs/2506.08424v2
- Date: Wed, 11 Jun 2025 06:43:18 GMT
- Title: SHIELD: Multi-task Multi-distribution Vehicle Routing Solver with Sparsity and Hierarchy
- Authors: Yong Liang Goh, Zhiguang Cao, Yining Ma, Jianan Zhou, Mohammed Haroon Dupty, Wee Sun Lee,
- Abstract summary: We introduce SHIELD, a novel model that leverages both sparsity and hierarchy principles.<n>We develop a context-based clustering layer that exploits the presence of hierarchical structures in the problems to produce better local representations.<n>Our results demonstrate the superiority of our approach over existing methods on 9 real-world maps with 16 VRP variants each.
- Score: 26.708590440636527
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advances toward foundation models for routing problems have shown great potential of a unified deep model for various VRP variants. However, they overlook the complex real-world customer distributions. In this work, we advance the Multi-Task VRP (MTVRP) setting to the more realistic yet challenging Multi-Task Multi-Distribution VRP (MTMDVRP) setting, and introduce SHIELD, a novel model that leverages both sparsity and hierarchy principles. Building on a deeper decoder architecture, we first incorporate the Mixture-of-Depths (MoD) technique to enforce sparsity. This improves both efficiency and generalization by allowing the model to dynamically select nodes to use or skip each decoder layer, providing the needed capacity to adaptively allocate computation for learning the task/distribution specific and shared representations. We also develop a context-based clustering layer that exploits the presence of hierarchical structures in the problems to produce better local representations. These two designs inductively bias the network to identify key features that are common across tasks and distributions, leading to significantly improved generalization on unseen ones. Our empirical results demonstrate the superiority of our approach over existing methods on 9 real-world maps with 16 VRP variants each.
Related papers
- FindRec: Stein-Guided Entropic Flow for Multi-Modal Sequential Recommendation [50.438552588818]
We propose textbfFindRec (textbfFlexible unified textbfinformation textbfdisentanglement for multi-modal sequential textbfRecommendation)<n>A Stein kernel-based Integrated Information Coordination Module (IICM) theoretically guarantees distribution consistency between multimodal features and ID streams.<n>A cross-modal expert routing mechanism that adaptively filters and combines multimodal features based on their contextual relevance.
arXiv Detail & Related papers (2025-07-07T04:09:45Z) - MTL-KD: Multi-Task Learning Via Knowledge Distillation for Generalizable Neural Vehicle Routing Solver [9.61561012521585]
This work introduces a novel multi-task learning method driven by knowledge distillation (MTL-KD)<n>The proposed MTL-KD method transfers policy knowledge from multiple distinct RL-based single-task models to a single heavy decoder model, label-free training and effectively improving the model's generalization ability across diverse tasks.<n> Experimental results on 6 seen and 10 unseen VRP variants with up to 1000 nodes indicate that our proposed method consistently achieves superior performance on both uniform and real-world benchmarks.
arXiv Detail & Related papers (2025-06-03T14:35:36Z) - GRAM: Generalization in Deep RL with a Robust Adaptation Module [62.662894174616895]
In this work, we present a framework for dynamics generalization in deep reinforcement learning.<n>We introduce a robust adaptation module that provides a mechanism for identifying and reacting to both in-distribution and out-of-distribution environment dynamics.<n>Our algorithm GRAM achieves strong generalization performance across in-distribution and out-of-distribution scenarios upon deployment.
arXiv Detail & Related papers (2024-12-05T16:39:01Z) - Improving Generalization of Neural Vehicle Routing Problem Solvers Through the Lens of Model Architecture [9.244633039170186]
We propose a plug-and-play Entropy-based Scaling Factor (ESF) and a Distribution-Specific (DS) decoder.<n>ESF adjusts the attention weight pattern of the model towards familiar ones discovered during training when solving VRPs of varying sizes.<n>DS decoder explicitly models VRPs of multiple training distribution patterns through multiple auxiliary light decoders, expanding the model representation space.
arXiv Detail & Related papers (2024-06-10T09:03:17Z) - Giving each task what it needs -- leveraging structured sparsity for tailored multi-task learning [4.462334751640166]
In the Multi-task Learning (MTL) framework, every task demands distinct feature representations, ranging from low-level to high-level attributes.
This work introduces Layer-d Multi-Task models that utilize structured sparsity to refine feature selection for individual tasks and enhance the performance of all tasks in a multi-task scenario.
arXiv Detail & Related papers (2024-06-05T08:23:38Z) - General-Purpose Multimodal Transformer meets Remote Sensing Semantic
Segmentation [35.100738362291416]
Multimodal AI seeks to exploit complementary data sources, particularly for complex tasks like semantic segmentation.
Recent trends in general-purpose multimodal networks have shown great potential to achieve state-of-the-art performance.
We propose a UNet-inspired module that employs 3D convolution to encode vital local information and learn cross-modal features simultaneously.
arXiv Detail & Related papers (2023-07-07T04:58:34Z) - How to Sense the World: Leveraging Hierarchy in Multimodal Perception
for Robust Reinforcement Learning Agents [9.840104333194663]
We argue for hierarchy in the design of representation models and contribute with a novel multimodal representation model, MUSE.
MUSE is the sensory representation model of deep reinforcement learning agents provided with multimodal observations in Atari games.
We perform a comparative study over different designs of reinforcement learning agents, showing that MUSE allows agents to perform tasks under incomplete perceptual experience with minimal performance loss.
arXiv Detail & Related papers (2021-10-07T16:35:23Z) - Recursive Multi-model Complementary Deep Fusion forRobust Salient Object
Detection via Parallel Sub Networks [62.26677215668959]
Fully convolutional networks have shown outstanding performance in the salient object detection (SOD) field.
This paper proposes a wider'' network architecture which consists of parallel sub networks with totally different network architectures.
Experiments on several famous benchmarks clearly demonstrate the superior performance, good generalization, and powerful learning ability of the proposed wider framework.
arXiv Detail & Related papers (2020-08-07T10:39:11Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
We propose a multi-semantic metapath (MSM) model for large scale heterogeneous representation learning.
Specifically, we generate multi-semantic metapath-based random walks to construct the heterogeneous neighborhood to handle the unbalanced distributions.
We conduct systematical evaluations for the proposed framework on two challenging datasets: Amazon and Alibaba.
arXiv Detail & Related papers (2020-07-19T22:50:20Z) - Deep Autoencoding Topic Model with Scalable Hybrid Bayesian Inference [55.35176938713946]
We develop deep autoencoding topic model (DATM) that uses a hierarchy of gamma distributions to construct its multi-stochastic-layer generative network.
We propose a Weibull upward-downward variational encoder that deterministically propagates information upward via a deep neural network, followed by a downward generative model.
The efficacy and scalability of our models are demonstrated on both unsupervised and supervised learning tasks on big corpora.
arXiv Detail & Related papers (2020-06-15T22:22:56Z) - Dynamic Hierarchical Mimicking Towards Consistent Optimization
Objectives [73.15276998621582]
We propose a generic feature learning mechanism to advance CNN training with enhanced generalization ability.
Partially inspired by DSN, we fork delicately designed side branches from the intermediate layers of a given neural network.
Experiments on both category and instance recognition tasks demonstrate the substantial improvements of our proposed method.
arXiv Detail & Related papers (2020-03-24T09:56:13Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
We propose a novel learning scheme for unpaired cross-modality image segmentation.
In our method, we heavily reuse network parameters, by sharing all convolutional kernels across CT and MRI.
We have extensively validated our approach on two multi-class segmentation problems.
arXiv Detail & Related papers (2020-01-06T20:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.