Better Reasoning with Less Data: Enhancing VLMs Through Unified Modality Scoring
- URL: http://arxiv.org/abs/2506.08429v1
- Date: Tue, 10 Jun 2025 04:04:58 GMT
- Title: Better Reasoning with Less Data: Enhancing VLMs Through Unified Modality Scoring
- Authors: Mingjie Xu, Andrew Estornell, Hongzheng Yang, Yuzhi Zhao, Zhaowei Zhu, Qi Xuan, Jiaheng Wei,
- Abstract summary: We propose a novel quality-driven data selection pipeline for visual instruction tuning datasets.<n>It integrates a cross-modality assessment framework that first assigns each data entry to its appropriate vision-language task.<n>It generates general and task-specific captions, and evaluates the alignment, clarity, task rarity, text coherence, and image clarity of each entry.
- Score: 26.174094671736686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application of visual instruction tuning and other post-training techniques has significantly enhanced the capabilities of Large Language Models (LLMs) in visual understanding, enriching Vision-Language Models (VLMs) with more comprehensive visual language datasets. However, the effectiveness of VLMs is highly dependent on large-scale, high-quality datasets that ensure precise recognition and accurate reasoning. Two key challenges hinder progress: (1) noisy alignments between images and the corresponding text, which leads to misinterpretation, and (2) ambiguous or misleading text, which obscures visual content. To address these challenges, we propose SCALE (Single modality data quality and Cross modality Alignment Evaluation), a novel quality-driven data selection pipeline for VLM instruction tuning datasets. Specifically, SCALE integrates a cross-modality assessment framework that first assigns each data entry to its appropriate vision-language task, generates general and task-specific captions (covering scenes, objects, style, etc.), and evaluates the alignment, clarity, task rarity, text coherence, and image clarity of each entry based on the generated captions. We reveal that: (1) current unimodal quality assessment methods evaluate one modality while overlooking the rest, which can underestimate samples essential for specific tasks and discard the lower-quality instances that help build model robustness; and (2) appropriately generated image captions provide an efficient way to transfer the image-text multimodal task into a unified text modality.
Related papers
- Text-Visual Semantic Constrained AI-Generated Image Quality Assessment [47.575342788480505]
We propose a unified framework to enhance the comprehensive evaluation of both text-image consistency and perceptual distortion in AI-generated images.<n>Our approach integrates key capabilities from multiple models and tackles the aforementioned challenges by introducing two core modules.<n>Tests conducted on multiple benchmark datasets demonstrate that SC-AGIQA outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2025-07-14T16:21:05Z) - TAViS: Text-bridged Audio-Visual Segmentation with Foundation Models [123.17643568298116]
We present TAViS, a novel framework that textbfcouples the knowledge of multimodal foundation models for cross-modal alignment.<n> effectively combining these models poses two key challenges: the difficulty in transferring the knowledge between SAM2 and ImageBind due to their different feature spaces, and the insufficiency of using only segmentation loss for supervision.<n>Our approach achieves superior performance on single-source, multi-source, semantic datasets, and excels in zero-shot settings.
arXiv Detail & Related papers (2025-06-13T03:19:47Z) - Picking the Cream of the Crop: Visual-Centric Data Selection with Collaborative Agents [62.616106562146776]
We propose a textbfVisual-Centric textbfSelection approach via textbfAgents Collaboration (ViSA)<n>Our approach consists of 1) an image information quantification method via visual agents collaboration to select images with rich visual information, and 2) a visual-centric instruction quality assessment method to select high-quality instruction data related to high-quality images.
arXiv Detail & Related papers (2025-02-27T09:37:30Z) - Leopard: A Vision Language Model For Text-Rich Multi-Image Tasks [62.758680527838436]
We propose Leopard, an MLLM tailored for handling vision-language tasks involving multiple text-rich images.<n>First, we curated about one million high-quality multimodal instruction-tuning data, tailored to text-rich, multi-image scenarios.<n>Second, we proposed an adaptive high-resolution multi-image encoding module to dynamically optimize the allocation of visual sequence length.
arXiv Detail & Related papers (2024-10-02T16:55:01Z) - VEGA: Learning Interleaved Image-Text Comprehension in Vision-Language Large Models [76.94378391979228]
We introduce a new, more demanding task known as Interleaved Image-Text (IITC)
This task challenges models to discern and disregard superfluous elements in both images and text to accurately answer questions.
In support of this task, we further craft a new VEGA dataset, tailored for the IITC task on scientific content, and devised a subtask, Image-Text Association (ITA)
arXiv Detail & Related papers (2024-06-14T17:59:40Z) - Enhancing Large Vision Language Models with Self-Training on Image Comprehension [131.14381425260706]
We introduce Self-Training on Image (STIC), which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference for image descriptions using unlabeled images.
To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data.
arXiv Detail & Related papers (2024-05-30T05:53:49Z) - FINEMATCH: Aspect-based Fine-grained Image and Text Mismatch Detection and Correction [66.98008357232428]
We propose FineMatch, a new aspect-based fine-grained text and image matching benchmark.
FineMatch focuses on text and image mismatch detection and correction.
We show that models trained on FineMatch demonstrate enhanced proficiency in detecting fine-grained text and image mismatches.
arXiv Detail & Related papers (2024-04-23T03:42:14Z) - Learning by Correction: Efficient Tuning Task for Zero-Shot Generative Vision-Language Reasoning [22.93684323791136]
Generative vision-language models (VLMs) have shown impressive performance in zero-shot vision-language tasks like image captioning and visual question answering.
We introduce Image-Conditioned Caption Correction (ICCC), a novel pre-training task designed to enhance ICCC's zero-shot performance without the need for labeled task.
Experimental results on BLIP-2 and InstructBLIP demonstrate significant improvements in zero-shot image-text generation-based tasks through ICCC instruction tuning.
arXiv Detail & Related papers (2024-04-01T04:28:01Z) - Seeing What You Miss: Vision-Language Pre-training with Semantic
Completion Learning [22.464424641734652]
Cross-modal alignment is essential for vision-language pre-training models.
We propose a novel Semantic Completion Learning task to facilitate global-to-local alignment.
We also present a flexible vision encoder, which enables our model to perform image-text and video-text multimodal tasks simultaneously.
arXiv Detail & Related papers (2022-11-24T06:39:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.