Learning to Lead: Incentivizing Strategic Agents in the Dark
- URL: http://arxiv.org/abs/2506.08438v1
- Date: Tue, 10 Jun 2025 04:25:04 GMT
- Title: Learning to Lead: Incentivizing Strategic Agents in the Dark
- Authors: Yuchen Wu, Xinyi Zhong, Zhuoran Yang,
- Abstract summary: We study an online learning version of the generalized principal-agent model.<n>We develop the first provably sample-efficient algorithm for this challenging setting.<n>We establish a near optimal $tildeO(sqrtT) $ regret bound for learning the principal's optimal policy.
- Score: 50.93875404941184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study an online learning version of the generalized principal-agent model, where a principal interacts repeatedly with a strategic agent possessing private types, private rewards, and taking unobservable actions. The agent is non-myopic, optimizing a discounted sum of future rewards and may strategically misreport types to manipulate the principal's learning. The principal, observing only her own realized rewards and the agent's reported types, aims to learn an optimal coordination mechanism that minimizes strategic regret. We develop the first provably sample-efficient algorithm for this challenging setting. Our approach features a novel pipeline that combines (i) a delaying mechanism to incentivize approximately myopic agent behavior, (ii) an innovative reward angle estimation framework that uses sector tests and a matching procedure to recover type-dependent reward functions, and (iii) a pessimistic-optimistic LinUCB algorithm that enables the principal to explore efficiently while respecting the agent's incentive constraints. We establish a near optimal $\tilde{O}(\sqrt{T}) $ regret bound for learning the principal's optimal policy, where $\tilde{O}(\cdot) $ omits logarithmic factors. Our results open up new avenues for designing robust online learning algorithms for a wide range of game-theoretic settings involving private types and strategic agents.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.<n>We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Estimating and Incentivizing Imperfect-Knowledge Agents with Hidden
Rewards [4.742123770879715]
In practice, incentive providers often cannot observe the reward realizations of incentivized agents.
This paper explores a repeated adverse selection game between a self-interested learning agent and a learning principal.
We introduce an estimator whose only input is the history of principal's incentives and agent's choices.
arXiv Detail & Related papers (2023-08-13T08:12:01Z) - MERMAIDE: Learning to Align Learners using Model-Based Meta-Learning [62.065503126104126]
We study how a principal can efficiently and effectively intervene on the rewards of a previously unseen learning agent in order to induce desirable outcomes.
This is relevant to many real-world settings like auctions or taxation, where the principal may not know the learning behavior nor the rewards of real people.
We introduce MERMAIDE, a model-based meta-learning framework to train a principal that can quickly adapt to out-of-distribution agents.
arXiv Detail & Related papers (2023-04-10T15:44:50Z) - Learning to Incentivize Information Acquisition: Proper Scoring Rules
Meet Principal-Agent Model [64.94131130042275]
We study the incentivized information acquisition problem, where a principal hires an agent to gather information on her behalf.
We design a provably sample efficient algorithm that tailors the UCB algorithm to our model.
Our algorithm features a delicate estimation procedure for the optimal profit of the principal, and a conservative correction scheme that ensures the desired agent's actions are incentivized.
arXiv Detail & Related papers (2023-03-15T13:40:16Z) - Learning in Stackelberg Games with Non-myopic Agents [60.927889817803745]
We study Stackelberg games where a principal repeatedly interacts with a non-myopic long-lived agent, without knowing the agent's payoff function.<n>We provide a general framework that reduces learning in presence of non-myopic agents to robust bandit optimization in the presence of myopic agents.
arXiv Detail & Related papers (2022-08-19T15:49:30Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
We derive a novel policy gradient-style robust optimization approach, PG-BROIL, to balance expected performance and risk.
Results suggest PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse.
arXiv Detail & Related papers (2021-06-11T16:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.