Modular Recurrence in Contextual MDPs for Universal Morphology Control
- URL: http://arxiv.org/abs/2506.08630v1
- Date: Tue, 10 Jun 2025 09:44:30 GMT
- Title: Modular Recurrence in Contextual MDPs for Universal Morphology Control
- Authors: Laurens Engwegen, Daan Brinks, Wendelin Böhmer,
- Abstract summary: Generalization to new, unseen robots, however, remains a challenge.<n>We implement a modular recurrent architecture and evaluate its generalization performance on a large set of MuJoCo robots.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A universal controller for any robot morphology would greatly improve computational and data efficiency. By utilizing contextual information about the properties of individual robots and exploiting their modular structure in the architecture of deep reinforcement learning agents, steps have been made towards multi-robot control. Generalization to new, unseen robots, however, remains a challenge. In this paper we hypothesize that the relevant contextual information is partially observable, but that it can be inferred through interactions for better generalization to contexts that are not seen during training. To this extent, we implement a modular recurrent architecture and evaluate its generalization performance on a large set of MuJoCo robots. The results show a substantial improved performance on robots with unseen dynamics, kinematics, and topologies, in four different environments.
Related papers
- Time is on my sight: scene graph filtering for dynamic environment perception in an LLM-driven robot [0.8515309662618664]
This paper presents a robot control architecture that addresses key challenges in human-robot interaction.
The architecture uses Large Language Models to integrate diverse information sources, including natural language commands.
The architecture enhances adaptability, task efficiency, and human-robot collaboration in dynamic environments.
arXiv Detail & Related papers (2024-11-22T15:58:26Z) - Body Transformer: Leveraging Robot Embodiment for Policy Learning [51.531793239586165]
Body Transformer (BoT) is an architecture that leverages the robot embodiment by providing an inductive bias that guides the learning process.
We represent the robot body as a graph of sensors and actuators, and rely on masked attention to pool information throughout the architecture.
The resulting architecture outperforms the vanilla transformer, as well as the classical multilayer perceptron, in terms of task completion, scaling properties, and computational efficiency.
arXiv Detail & Related papers (2024-08-12T17:31:28Z) - HeteroMorpheus: Universal Control Based on Morphological Heterogeneity Modeling [12.771577344846282]
HeteroMorpheus is a novel method based on heterogeneous graph Transformer.
We demonstrate the superiority of HeteroMorpheus against state-of-the-art methods in the capability of policy generalization.
arXiv Detail & Related papers (2024-08-02T12:40:01Z) - RoboCodeX: Multimodal Code Generation for Robotic Behavior Synthesis [102.1876259853457]
We propose a tree-structured multimodal code generation framework for generalized robotic behavior synthesis, termed RoboCodeX.
RoboCodeX decomposes high-level human instructions into multiple object-centric manipulation units consisting of physical preferences such as affordance and safety constraints.
To further enhance the capability to map conceptual and perceptual understanding into control commands, a specialized multimodal reasoning dataset is collected for pre-training and an iterative self-updating methodology is introduced for supervised fine-tuning.
arXiv Detail & Related papers (2024-02-25T15:31:43Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Universal Morphology Control via Contextual Modulation [52.742056836818136]
Learning a universal policy across different robot morphologies can significantly improve learning efficiency and generalization in continuous control.
Existing methods utilize graph neural networks or transformers to handle heterogeneous state and action spaces across different morphologies.
We propose a hierarchical architecture to better model this dependency via contextual modulation.
arXiv Detail & Related papers (2023-02-22T00:04:12Z) - RT-1: Robotics Transformer for Real-World Control at Scale [98.09428483862165]
We present a model class, dubbed Robotics Transformer, that exhibits promising scalable model properties.
We verify our conclusions in a study of different model classes and their ability to generalize as a function of the data size, model size, and data diversity based on a large-scale data collection on real robots performing real-world tasks.
arXiv Detail & Related papers (2022-12-13T18:55:15Z) - MetaMorph: Learning Universal Controllers with Transformers [45.478223199658785]
In robotics we primarily train a single robot for a single task.
modular robot systems now allow for the flexible combination of general-purpose building blocks into task optimized morphologies.
We propose MetaMorph, a Transformer based approach to learn a universal controller over a modular robot design space.
arXiv Detail & Related papers (2022-03-22T17:58:31Z) - Deep Imitation Learning for Bimanual Robotic Manipulation [70.56142804957187]
We present a deep imitation learning framework for robotic bimanual manipulation.
A core challenge is to generalize the manipulation skills to objects in different locations.
We propose to (i) decompose the multi-modal dynamics into elemental movement primitives, (ii) parameterize each primitive using a recurrent graph neural network to capture interactions, and (iii) integrate a high-level planner that composes primitives sequentially and a low-level controller to combine primitive dynamics and inverse kinematics control.
arXiv Detail & Related papers (2020-10-11T01:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.