Seedance 1.0: Exploring the Boundaries of Video Generation Models
- URL: http://arxiv.org/abs/2506.09113v2
- Date: Sat, 28 Jun 2025 11:58:23 GMT
- Title: Seedance 1.0: Exploring the Boundaries of Video Generation Models
- Authors: Yu Gao, Haoyuan Guo, Tuyen Hoang, Weilin Huang, Lu Jiang, Fangyuan Kong, Huixia Li, Jiashi Li, Liang Li, Xiaojie Li, Xunsong Li, Yifu Li, Shanchuan Lin, Zhijie Lin, Jiawei Liu, Shu Liu, Xiaonan Nie, Zhiwu Qing, Yuxi Ren, Li Sun, Zhi Tian, Rui Wang, Sen Wang, Guoqiang Wei, Guohong Wu, Jie Wu, Ruiqi Xia, Fei Xiao, Xuefeng Xiao, Jiangqiao Yan, Ceyuan Yang, Jianchao Yang, Runkai Yang, Tao Yang, Yihang Yang, Zilyu Ye, Xuejiao Zeng, Yan Zeng, Heng Zhang, Yang Zhao, Xiaozheng Zheng, Peihao Zhu, Jiaxin Zou, Feilong Zuo,
- Abstract summary: Seedance 1.0 is a high-performance and inference-efficient video foundation generation model.<n>It integrates multi-source curation data augmented with precision and meaningful video captioning.<n>Seedance 1.0 can generate a 5-second video at 1080p resolution only with 41.4 seconds ( NVIDIA-L20)
- Score: 71.26796999246068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Notable breakthroughs in diffusion modeling have propelled rapid improvements in video generation, yet current foundational model still face critical challenges in simultaneously balancing prompt following, motion plausibility, and visual quality. In this report, we introduce Seedance 1.0, a high-performance and inference-efficient video foundation generation model that integrates several core technical improvements: (i) multi-source data curation augmented with precision and meaningful video captioning, enabling comprehensive learning across diverse scenarios; (ii) an efficient architecture design with proposed training paradigm, which allows for natively supporting multi-shot generation and jointly learning of both text-to-video and image-to-video tasks. (iii) carefully-optimized post-training approaches leveraging fine-grained supervised fine-tuning, and video-specific RLHF with multi-dimensional reward mechanisms for comprehensive performance improvements; (iv) excellent model acceleration achieving ~10x inference speedup through multi-stage distillation strategies and system-level optimizations. Seedance 1.0 can generate a 5-second video at 1080p resolution only with 41.4 seconds (NVIDIA-L20). Compared to state-of-the-art video generation models, Seedance 1.0 stands out with high-quality and fast video generation having superior spatiotemporal fluidity with structural stability, precise instruction adherence in complex multi-subject contexts, native multi-shot narrative coherence with consistent subject representation.
Related papers
- DanceGRPO: Unleashing GRPO on Visual Generation [36.36813831536346]
This paper introduces DanceGRPO, the first unified framework to adapt Group Relative Policy Optimization to visual generation paradigms.<n>To our knowledge, DanceGRPO is the first RL-based unified framework capable of seamless adaptation across diverse generative paradigms.
arXiv Detail & Related papers (2025-05-12T17:59:34Z) - DiVE: Efficient Multi-View Driving Scenes Generation Based on Video Diffusion Transformer [56.98400572837792]
DiVE produces high-fidelity, temporally coherent, and cross-view consistent multi-view videos.<n>These innovations collectively achieve a 2.62x speedup with minimal quality degradation.
arXiv Detail & Related papers (2025-04-28T09:20:50Z) - SkyReels-V2: Infinite-length Film Generative Model [35.00453687783287]
We propose SkyReels-V2, an Infinite-length Film Generative Model, that synergizes Multi-modal Large Language Model (MLLM), Multi-stage Pretraining, Reinforcement Learning, and Diffusion Forcing Framework.<n>We establish progressive-resolution pretraining for the fundamental video generation, followed by a four-stage post-training enhancement.
arXiv Detail & Related papers (2025-04-17T16:37:27Z) - Raccoon: Multi-stage Diffusion Training with Coarse-to-Fine Curating Videos [15.781862060265519]
CFC-VIDS-1M is a high-quality video dataset constructed through a systematic coarse-to-fine curation pipeline.<n>We develop RACCOON, a transformer-based architecture with decoupled spatial-temporal attention mechanisms.
arXiv Detail & Related papers (2025-02-28T18:56:35Z) - Vchitect-2.0: Parallel Transformer for Scaling Up Video Diffusion Models [89.79067761383855]
Vchitect-2.0 is a parallel transformer architecture designed to scale up video diffusion models for large-scale text-to-video generation.<n>By introducing a novel Multimodal Diffusion Block, our approach achieves consistent alignment between text descriptions and generated video frames.<n>To overcome memory and computational bottlenecks, we propose a Memory-efficient Training framework.
arXiv Detail & Related papers (2025-01-14T21:53:11Z) - Making Every Frame Matter: Continuous Activity Recognition in Streaming Video via Adaptive Video Context Modeling [19.205142489726875]
Video activity recognition has become increasingly important in robots and embodied AI.<n>We introduce a novel system, CARS, to overcome these issues through adaptive video context modeling.<n>Our CARS runs at speeds $>$30 FPS on typical edge devices and outperforms all baselines by 1.2% to 79.7% in accuracy.
arXiv Detail & Related papers (2024-10-19T05:50:00Z) - xGen-VideoSyn-1: High-fidelity Text-to-Video Synthesis with Compressed Representations [120.52120919834988]
xGen-SynVideo-1 is a text-to-video (T2V) generation model capable of producing realistic scenes from textual descriptions.
VidVAE compresses video data both spatially and temporally, significantly reducing the length of visual tokens.
DiT model incorporates spatial and temporal self-attention layers, enabling robust generalization across different timeframes and aspect ratios.
arXiv Detail & Related papers (2024-08-22T17:55:22Z) - Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World
Video Super-Resolution [65.91317390645163]
Upscale-A-Video is a text-guided latent diffusion framework for video upscaling.
It ensures temporal coherence through two key mechanisms: locally, it integrates temporal layers into U-Net and VAE-Decoder, maintaining consistency within short sequences.
It also offers greater flexibility by allowing text prompts to guide texture creation and adjustable noise levels to balance restoration and generation.
arXiv Detail & Related papers (2023-12-11T18:54:52Z) - Video Probabilistic Diffusion Models in Projected Latent Space [75.4253202574722]
We propose a novel generative model for videos, coined projected latent video diffusion models (PVDM)
PVDM learns a video distribution in a low-dimensional latent space and thus can be efficiently trained with high-resolution videos under limited resources.
arXiv Detail & Related papers (2023-02-15T14:22:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.