Revisiting Graph Projections for Effective Complementary Product Recommendation
- URL: http://arxiv.org/abs/2506.09209v1
- Date: Tue, 10 Jun 2025 19:59:49 GMT
- Title: Revisiting Graph Projections for Effective Complementary Product Recommendation
- Authors: Leandro Anghinoni, Pablo Zivic, Jorge Adrian Sanchez,
- Abstract summary: We propose a simple yet effective method to predict a list of complementary products given a query item.<n>We revisit bipartite graph projections for recommender systems and propose a novel approach for inferring complementarity relationships.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Complementary product recommendation is a powerful strategy to improve customer experience and retail sales. However, recommending the right product is not a simple task because of the noisy and sparse nature of user-item interactions. In this work, we propose a simple yet effective method to predict a list of complementary products given a query item, based on the structure of a directed weighted graph projected from the user-item bipartite graph. We revisit bipartite graph projections for recommender systems and propose a novel approach for inferring complementarity relationships from historical user-item interactions. We compare our model with recent methods from the literature and show, despite the simplicity of our approach, an average improvement of +43% and +38% over sequential and graph-based recommenders, respectively, over different benchmarks.
Related papers
- Graph Contrastive Learning on Multi-label Classification for Recommendations [34.785207813971134]
We propose a model called Graph Contrastive Learning for Multi-label Classification (MCGCL)<n>MCGCL leverages contrastive learning to enhance recommendation effectiveness.<n>We assess the performance using real-world datasets from Amazon Reviews in multi-label classification tasks.
arXiv Detail & Related papers (2025-01-13T00:29:29Z) - Preference and Concurrence Aware Bayesian Graph Neural Networks for
Recommender Systems [5.465420718331109]
Graph-based collaborative filtering methods have prevailing performance for recommender systems.
We propose an efficient generative model that jointly considers the preferences of users, the concurrence of items and some important graph structure information.
arXiv Detail & Related papers (2023-11-30T11:49:33Z) - Graph Collaborative Signals Denoising and Augmentation for
Recommendation [75.25320844036574]
We propose a new graph adjacency matrix that incorporates user-user and item-item correlations.
We show that the inclusion of user-user and item-item correlations can improve recommendations for users with both abundant and insufficient interactions.
arXiv Detail & Related papers (2023-04-06T19:43:37Z) - Ordinal Graph Gamma Belief Network for Social Recommender Systems [54.9487910312535]
We develop a hierarchical Bayesian model termed ordinal graph factor analysis (OGFA), which jointly models user-item and user-user interactions.
OGFA not only achieves good recommendation performance, but also extracts interpretable latent factors corresponding to representative user preferences.
We extend OGFA to ordinal graph gamma belief network, which is a multi-stochastic-layer deep probabilistic model.
arXiv Detail & Related papers (2022-09-12T09:19:22Z) - Augmenting the User-Item Graph with Textual Similarity Models [9.703969546479954]
A paraphrase similarity model is applied to widely available textual data, such as reviews and product descriptions.
This increases the density of the graph without needing further labeled data.
Results show that the data augmentation technique provides significant improvements to all types of models.
arXiv Detail & Related papers (2021-09-20T08:23:05Z) - Privileged Graph Distillation for Cold Start Recommendation [57.918041397089254]
The cold start problem in recommender systems requires recommending to new users (items) based on attributes without any historical interaction records.
We propose a privileged graph distillation model(PGD)
Our proposed model is generally applicable to different cold start scenarios with new user, new item, or new user-new item.
arXiv Detail & Related papers (2021-05-31T14:05:27Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
We propose a novel unsupervised multi-view feature selection model based on graph learning.
The contributions are threefold: (1) during the feature selection procedure, the consensus similarity graph shared by different views is learned.
Experiments on various datasets demonstrate the superiority of the proposed method compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T03:25:25Z) - Dynamic Graph Collaborative Filtering [64.87765663208927]
Dynamic recommendation is essential for recommender systems to provide real-time predictions based on sequential data.
Here we propose Dynamic Graph Collaborative Filtering (DGCF), a novel framework leveraging dynamic graphs to capture collaborative and sequential relations.
Our approach achieves higher performance when the dataset contains less action repetition, indicating the effectiveness of integrating dynamic collaborative information.
arXiv Detail & Related papers (2021-01-08T04:16:24Z) - Pre-training Graph Transformer with Multimodal Side Information for
Recommendation [82.4194024706817]
We propose a pre-training strategy to learn item representations by considering both item side information and their relationships.
We develop a novel sampling algorithm named MCNSampling to select contextual neighbors for each item.
The proposed Pre-trained Multimodal Graph Transformer (PMGT) learns item representations with two objectives: 1) graph structure reconstruction, and 2) masked node feature reconstruction.
arXiv Detail & Related papers (2020-10-23T10:30:24Z) - Embedding Ranking-Oriented Recommender System Graphs [10.74267520911262]
We propose PGRec, a graph-based ranking-oriented recommendation framework.
We have evaluated the performance of the proposed method against the state of the art model-based and neighborhood-based recommendation methods, and our experiments show that PGRec outperforms the baseline algorithms up to 3.2% in terms of NDCG@10 in different MovieLens datasets.
arXiv Detail & Related papers (2020-07-31T16:56:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.