G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration
- URL: http://arxiv.org/abs/2506.09272v1
- Date: Tue, 10 Jun 2025 22:14:34 GMT
- Title: G-Sim: Generative Simulations with Large Language Models and Gradient-Free Calibration
- Authors: Samuel Holt, Max Ruiz Luyten, Antonin Berthon, Mihaela van der Schaar,
- Abstract summary: G-Sim is a hybrid framework that automates simulator construction with rigorous empirical calibration.<n>It produces reliable, causally-informed simulators, mitigating data-inefficiency and enabling robust system-level interventions.
- Score: 48.948187359727996
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Constructing robust simulators is essential for asking "what if?" questions and guiding policy in critical domains like healthcare and logistics. However, existing methods often struggle, either failing to generalize beyond historical data or, when using Large Language Models (LLMs), suffering from inaccuracies and poor empirical alignment. We introduce G-Sim, a hybrid framework that automates simulator construction by synergizing LLM-driven structural design with rigorous empirical calibration. G-Sim employs an LLM in an iterative loop to propose and refine a simulator's core components and causal relationships, guided by domain knowledge. This structure is then grounded in reality by estimating its parameters using flexible calibration techniques. Specifically, G-Sim can leverage methods that are both likelihood-free and gradient-free with respect to the simulator, such as gradient-free optimization for direct parameter estimation or simulation-based inference for obtaining a posterior distribution over parameters. This allows it to handle non-differentiable and stochastic simulators. By integrating domain priors with empirical evidence, G-Sim produces reliable, causally-informed simulators, mitigating data-inefficiency and enabling robust system-level interventions for complex decision-making.
Related papers
- Gaussian process surrogate model to approximate power grid simulators -- An application to the certification of a congestion management controller [2.1485350418225244]
With the digitalization of power grids, physical equations become insufficient to describe the network's behavior.<n> numerical experiments, such as safety validation, that involve simulating a large number of scenarios become computationally intractable.<n>A popular solution is to learn a surrogate model of the simulator with Machine Learning (ML) and then conduct the experiment directly on the fast-to-evaluate surrogate model.
arXiv Detail & Related papers (2025-02-28T18:10:52Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.<n>We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.<n>In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - Informal Safety Guarantees for Simulated Optimizers Through
Extrapolation from Partial Simulations [0.0]
Self-supervised learning is the backbone of state of the art language modeling.
It has been argued that training with predictive loss on a self-supervised dataset causes simulators.
arXiv Detail & Related papers (2023-11-29T09:32:56Z) - ClimSim-Online: A Large Multi-scale Dataset and Framework for Hybrid ML-physics Climate Emulation [45.201929285600606]
We present ClimSim-Online, which includes an end-to-end workflow for developing hybrid ML-physics simulators.
The dataset is global and spans ten years at a high sampling frequency.
We provide a cross-platform, containerized pipeline to integrate ML models into operational climate simulators.
arXiv Detail & Related papers (2023-06-14T21:26:31Z) - DagSim: Combining DAG-based model structure with unconstrained data
types and relations for flexible, transparent, and modularized data
simulation [2.685173014586162]
We present DagSim, a Python-based framework for DAG-based data simulation without any constraints on variable types or functional relations.
A succinct YAML format for defining the simulation model structure promotes transparency.
We illustrate the capabilities of DagSim through use cases where metadata variables control shapes in an image and patterns in bio-sequences.
arXiv Detail & Related papers (2022-05-06T17:43:27Z) - DiSECt: A Differentiable Simulator for Parameter Inference and Control
in Robotic Cutting [71.50844437057555]
We present DiSECt: the first differentiable simulator for cutting soft materials.
The simulator augments the finite element method with a continuous contact model based on signed distance fields.
We show that the simulator can be calibrated to match resultant forces and fields from a state-of-the-art commercial solver.
arXiv Detail & Related papers (2022-03-19T07:27:19Z) - Auto-Tuned Sim-to-Real Transfer [143.44593793640814]
Policies trained in simulation often fail when transferred to the real world.
Current approaches to tackle this problem, such as domain randomization, require prior knowledge and engineering.
We propose a method for automatically tuning simulator system parameters to match the real world.
arXiv Detail & Related papers (2021-04-15T17:59:55Z) - A User's Guide to Calibrating Robotics Simulators [54.85241102329546]
This paper proposes a set of benchmarks and a framework for the study of various algorithms aimed to transfer models and policies learnt in simulation to the real world.
We conduct experiments on a wide range of well known simulated environments to characterize and offer insights into the performance of different algorithms.
Our analysis can be useful for practitioners working in this area and can help make informed choices about the behavior and main properties of sim-to-real algorithms.
arXiv Detail & Related papers (2020-11-17T22:24:26Z) - DISCO: Double Likelihood-free Inference Stochastic Control [29.84276469617019]
We propose to leverage the power of modern simulators and recent techniques in Bayesian statistics for likelihood-free inference.
The posterior distribution over simulation parameters is propagated through a potentially non-analytical model of the system.
Experiments show that the controller proposed attained superior performance and robustness on classical control and robotics tasks.
arXiv Detail & Related papers (2020-02-18T05:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.