A High-Quality Dataset and Reliable Evaluation for Interleaved Image-Text Generation
- URL: http://arxiv.org/abs/2506.09427v1
- Date: Wed, 11 Jun 2025 06:21:20 GMT
- Title: A High-Quality Dataset and Reliable Evaluation for Interleaved Image-Text Generation
- Authors: Yukang Feng, Jianwen Sun, Chuanhao Li, Zizhen Li, Jiaxin Ai, Fanrui Zhang, Yifan Chang, Sizhuo Zhou, Shenglin Zhang, Yu Dai, Kaipeng Zhang,
- Abstract summary: We introduce InterSyn, a large-scale multimodal dataset constructed using our Self-Evaluation with Iterative Refinement (SEIR) method.<n>InterSyn features multi-turn, instruction-driven dialogues with tightly interleaved imagetext responses.<n>To address the lack of reliable evaluation tools capable of assessing interleaved multimodal outputs, we introduce SynJudge.
- Score: 14.590341095970883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Large Multimodal Models (LMMs) have significantly improved multimodal understanding and generation. However, these models still struggle to generate tightly interleaved image-text outputs, primarily due to the limited scale, quality and instructional richness of current training datasets. To address this, we introduce InterSyn, a large-scale multimodal dataset constructed using our Self-Evaluation with Iterative Refinement (SEIR) method. InterSyn features multi-turn, instruction-driven dialogues with tightly interleaved imagetext responses, providing rich object diversity and rigorous automated quality refinement, making it well-suited for training next-generation instruction-following LMMs. Furthermore, to address the lack of reliable evaluation tools capable of assessing interleaved multimodal outputs, we introduce SynJudge, an automatic evaluation model designed to quantitatively assess multimodal outputs along four dimensions: text content, image content, image quality, and image-text synergy. Experimental studies show that the SEIR method leads to substantially higher dataset quality compared to an otherwise identical process without refinement. Moreover, LMMs trained on InterSyn achieve uniform performance gains across all evaluation metrics, confirming InterSyn's utility for advancing multimodal systems.
Related papers
- CoLLM: A Large Language Model for Composed Image Retrieval [76.29725148964368]
Composed Image Retrieval (CIR) is a complex task that aims to retrieve images based on a multimodal query.<n>We present CoLLM, a one-stop framework that generates triplets on-the-fly from image-caption pairs.<n>We leverage Large Language Models (LLMs) to generate joint embeddings of reference images and modification texts.
arXiv Detail & Related papers (2025-03-25T17:59:50Z) - Multi2: Multi-Agent Test-Time Scalable Framework for Multi-Document Processing [43.75154489681047]
We propose a novel framework leveraging test-time scaling for Multi-Document Summarization (MDS)<n>Our approach employs prompt ensemble techniques to generate multiple candidate summaries using various prompts, then combines them with an aggregator to produce a refined summary.<n>To evaluate our method effectively, we also introduce two new LLM-based metrics: the Consistency-Aware Preference (CAP) score and LLM Atom-Content-Unit (LLM-ACU) score.
arXiv Detail & Related papers (2025-02-27T23:34:47Z) - mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data [71.352883755806]
Multimodal embedding models have gained significant attention for their ability to map data from different modalities, such as text and images, into a unified representation space.<n>However, the limited labeled multimodal data often hinders embedding performance.<n>Recent approaches have leveraged data synthesis to address this problem, yet the quality of synthetic data remains a critical bottleneck.
arXiv Detail & Related papers (2025-02-12T15:03:33Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
We introduce MMIE, a large-scale benchmark for evaluating interleaved multimodal comprehension and generation in Large Vision-Language Models (LVLMs)<n>MMIE comprises 20K meticulously curated multimodal queries, spanning 3 categories, 12 fields, and 102 subfields, including mathematics, coding, physics, literature, health, and arts.<n>It supports both interleaved inputs and outputs, offering a mix of multiple-choice and open-ended question formats to evaluate diverse competencies.
arXiv Detail & Related papers (2024-10-14T04:15:00Z) - MMEvol: Empowering Multimodal Large Language Models with Evol-Instruct [148.39859547619156]
We propose MMEvol, a novel multimodal instruction data evolution framework.<n>MMEvol iteratively improves data quality through a refined combination of fine-grained perception, cognitive reasoning, and interaction evolution.<n>Our approach reaches state-of-the-art (SOTA) performance in nine tasks using significantly less data compared to state-of-the-art models.
arXiv Detail & Related papers (2024-09-09T17:44:00Z) - What are the Essential Factors in Crafting Effective Long Context Multi-Hop Instruction Datasets? Insights and Best Practices [91.71951459594074]
Long language models (LLMs) with extended context windows have significantly improved tasks such as information extraction, question answering, and complex planning scenarios.<n>Existing methods typically utilize the Self-Instruct framework to generate instruction tuning data for better long context capability improvement.<n>We propose the Multi-agent Interactive Multi-hop Generation framework, incorporating a Quality Verification Agent, a Single-hop Question Generation Agent, a Multiple Question Sampling Strategy, and a Multi-hop Question Merger Agent.<n>Our findings show that our synthetic high-quality long-context instruction data significantly enhances model performance, even surpassing models trained on larger amounts of human
arXiv Detail & Related papers (2024-09-03T13:30:00Z) - CoMM: A Coherent Interleaved Image-Text Dataset for Multimodal Understanding and Generation [20.106207598099363]
We introduce CoMM, a high-quality dataset designed to enhance the coherence, consistency, and alignment of generated multimodal content.<n>CoMM harnesses raw data from diverse sources, focusing on instructional content and visual storytelling.<n>Various quality evaluation metrics are designed to prove the high quality of the filtered dataset.
arXiv Detail & Related papers (2024-06-15T01:27:58Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.