Safe Screening Rules for Group SLOPE
- URL: http://arxiv.org/abs/2506.09451v1
- Date: Wed, 11 Jun 2025 06:56:08 GMT
- Title: Safe Screening Rules for Group SLOPE
- Authors: Runxue Bao, Quanchao Lu, Yanfu Zhang,
- Abstract summary: Group SLOPE performs well for the adaptive selection of groups of predictors.<n>However, the block non-separable group effects in Group SLOPE make existing methods either invalid or inefficient.<n>We introduce a safe screening rule tailored for the Group SLOPE model, which efficiently identifies inactive groups with zero coefficients.
- Score: 10.831609326463756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variable selection is a challenging problem in high-dimensional sparse learning, especially when group structures exist. Group SLOPE performs well for the adaptive selection of groups of predictors. However, the block non-separable group effects in Group SLOPE make existing methods either invalid or inefficient. Consequently, Group SLOPE tends to incur significant computational costs and memory usage in practical high-dimensional scenarios. To overcome this issue, we introduce a safe screening rule tailored for the Group SLOPE model, which efficiently identifies inactive groups with zero coefficients by addressing the block non-separable group effects. By excluding these inactive groups during training, we achieve considerable gains in computational efficiency and memory usage. Importantly, the proposed screening rule can be seamlessly integrated into existing solvers for both batch and stochastic algorithms. Theoretically, we establish that our screening rule can be safely employed with existing optimization algorithms, ensuring the same results as the original approaches. Experimental results confirm that our method effectively detects inactive feature groups and significantly boosts computational efficiency without compromising accuracy.
Related papers
- Best Group Identification in Multi-Objective Bandits [17.056463635480714]
We introduce the Best Group Identification problem in a multi-objective multi-armed bandit setting.<n>The objective is to identify the set of optimal groups in the fixed-confidence setting.<n>We propose elimination-based algorithms, establish upper bounds on their sample complexity, and derive lower bounds that apply to any correct algorithm.
arXiv Detail & Related papers (2025-05-23T13:16:59Z) - Safe Screening Rules for Group OWL Models [10.831609326463756]
Group Ordered Weighted $L_1$-Norm (Group OWL) regularized models have emerged as a useful procedure for high-dimensional sparse multi-task learning with correlated features.<n>Group OWL models usually suffer huge computational costs and memory usage when the feature size is large in the high-dimensional scenario.<n>We propose the safe screening rule for Group OWL models by effectively tackling the structured non-separable penalty.
arXiv Detail & Related papers (2025-04-04T04:07:37Z) - Project-Probe-Aggregate: Efficient Fine-Tuning for Group Robustness [53.96714099151378]
We propose a three-step approach for parameter-efficient fine-tuning of image-text foundation models.<n>Our method improves its two key components: minority samples identification and the robust training algorithm.<n>Our theoretical analysis shows that our PPA enhances minority group identification and is Bayes optimal for minimizing the balanced group error.
arXiv Detail & Related papers (2025-03-12T15:46:12Z) - Achieving Sample and Computational Efficient Reinforcement Learning by
Action Space Reduction via Grouping [7.691755449724638]
Reinforcement learning often needs to deal with the exponential growth of states and actions in high-dimensional spaces.
We learn the inherent structure of action-wise similar MDP to appropriately balance the performance degradation versus sample/computational complexity.
arXiv Detail & Related papers (2023-06-22T15:40:10Z) - Anti-Exploration by Random Network Distillation [63.04360288089277]
We show that a naive choice of conditioning for the Random Network Distillation (RND) is not discriminative enough to be used as an uncertainty estimator.
We show that this limitation can be avoided with conditioning based on Feature-wise Linear Modulation (FiLM)
We evaluate it on the D4RL benchmark, showing that it is capable of achieving performance comparable to ensemble-based methods and outperforming ensemble-free approaches by a wide margin.
arXiv Detail & Related papers (2023-01-31T13:18:33Z) - Feature Grouping and Sparse Principal Component Analysis [23.657672812296518]
Grouping and Sparse Principal Analysis (SPCA) is widely used in data processing dimension reduction.
FGSPCA allows loadings to belong to disjoint homogeneous groups, with sparsity as a special case.
arXiv Detail & Related papers (2021-06-25T15:08:39Z) - Certifiably Polynomial Algorithm for Best Group Subset Selection [0.9667631210393929]
Best group subset selection aims to choose a small part of non-overlapping groups to achieve the best interpretability on the response variable.
We propose a group-splicing algorithm that iteratively detects effective groups and excludes the helpless ones.
We demonstrate the efficiency and accuracy of our proposal by comparing state-of-the-art algorithms on both synthetic and real-world datasets.
arXiv Detail & Related papers (2021-04-23T03:05:11Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
Group recommender systems should be able to accurately learn not only users' personal preferences but also preference aggregation strategy.
In this paper, we take Bipartite Graphding Model (BGEM), the self-attention mechanism and Graph Convolutional Networks (GCNs) as basic building blocks to learn group and user representations in a unified way.
arXiv Detail & Related papers (2020-10-02T07:11:19Z) - Robust Recursive Partitioning for Heterogeneous Treatment Effects with
Uncertainty Quantification [84.53697297858146]
Subgroup analysis of treatment effects plays an important role in applications from medicine to public policy to recommender systems.
Most of the current methods of subgroup analysis begin with a particular algorithm for estimating individualized treatment effects (ITE)
This paper develops a new method for subgroup analysis, R2P, that addresses all these weaknesses.
arXiv Detail & Related papers (2020-06-14T14:50:02Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
We study the problem of clustering a set of items from binary user feedback.
We devise an algorithm with a minimal cluster recovery error rate.
For adaptive selection, we develop an algorithm inspired by the derivation of the information-theoretical error lower bounds.
arXiv Detail & Related papers (2019-10-14T09:18:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.