KG-Infused RAG: Augmenting Corpus-Based RAG with External Knowledge Graphs
- URL: http://arxiv.org/abs/2506.09542v1
- Date: Wed, 11 Jun 2025 09:20:02 GMT
- Title: KG-Infused RAG: Augmenting Corpus-Based RAG with External Knowledge Graphs
- Authors: Dingjun Wu, Yukun Yan, Zhenghao Liu, Zhiyuan Liu, Maosong Sun,
- Abstract summary: KG-Infused RAG is a framework that integrates KGs into RAG systems to implement spreading activation.<n> KG-Infused RAG retrieves KG facts, expands the query accordingly, and enhances generation by combining corpus passages with structured facts.
- Score: 66.35046942874737
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval-Augmented Generation (RAG) improves factual accuracy by grounding responses in external knowledge. However, existing methods typically rely on a single source, either unstructured text or structured knowledge. Moreover, they lack cognitively inspired mechanisms for activating relevant knowledge. To address these issues, we propose KG-Infused RAG, a framework that integrates KGs into RAG systems to implement spreading activation, a cognitive process that enables concept association and inference. KG-Infused RAG retrieves KG facts, expands the query accordingly, and enhances generation by combining corpus passages with structured facts, enabling interpretable, multi-source retrieval grounded in semantic structure. We further improve KG-Infused RAG via preference learning on sampled key stages in the pipeline. Experiments on five QA benchmarks show that KG-Infused RAG consistently outperforms vanilla RAG (by 3.8% to 13.8%). Additionally, when integrated into Self-RAG, KG-Infused RAG brings further performance gains, demonstrating its effectiveness and versatility as a plug-and-play enhancement module for corpus-based RAG methods.
Related papers
- Walk&Retrieve: Simple Yet Effective Zero-shot Retrieval-Augmented Generation via Knowledge Graph Walks [2.717314422130497]
Large Language Models (LLMs) have showcased impressive reasoning abilities, but often suffer from hallucinations or outdated knowledge.<n> Knowledge Graph (KG)-based Retrieval-Augmented Generation (RAG) remedies these shortcomings by grounding responses in structured external information from a knowledge base.<n>However, many KG-based RAG approaches struggle with (i) aligning KG and textual representations, (ii) balancing retrieval accuracy and efficiency, and (iii) adapting to dynamically updated KGs.
arXiv Detail & Related papers (2025-05-22T16:11:35Z) - Know3-RAG: A Knowledge-aware RAG Framework with Adaptive Retrieval, Generation, and Filtering [9.814926166669366]
We propose Know3-RAG, a knowledge-aware RAG framework that leverages structured knowledge from knowledge graphs (KGs) to guide three core stages of the RAG process, including retrieval, generation, and filtering.<n> Experiments on multiple open-domain QA benchmarks demonstrate that Know3-RAG consistently outperforms strong baselines, significantly reducing hallucinations and enhancing answer reliability.
arXiv Detail & Related papers (2025-05-19T03:25:18Z) - RAG-KG-IL: A Multi-Agent Hybrid Framework for Reducing Hallucinations and Enhancing LLM Reasoning through RAG and Incremental Knowledge Graph Learning Integration [4.604003661048267]
RAG-KG-IL is a novel multi-agent hybrid framework designed to enhance the reasoning capabilities of Large Language Models.<n>It integrates Retrieval-Augmented Generation (RAG) and Knowledge Graphs (KGs) with an Incremental Learning (IL) approach.<n>We evaluate the framework using real-world case studies involving health-related queries.
arXiv Detail & Related papers (2025-03-14T11:50:16Z) - Knowledge Graph-Guided Retrieval Augmented Generation [34.83235788116369]
We propose a Knowledge Graph-Guided Retrieval Augmented Generation framework.<n> KG$2$RAG provides fact-level relationships between chunks, improving the diversity and coherence of the retrieved results.
arXiv Detail & Related papers (2025-02-08T02:14:31Z) - FRAG: A Flexible Modular Framework for Retrieval-Augmented Generation based on Knowledge Graphs [17.477161619378332]
We propose a novel flexible modular KG-RAG framework, termed FRAG, which synergizes the advantages of both approaches.<n>By using the query text instead of the Knowledge Graph, FRAG improves retrieval quality while maintaining flexibility.
arXiv Detail & Related papers (2025-01-17T05:19:14Z) - Unanswerability Evaluation for Retrieval Augmented Generation [74.3022365715597]
UAEval4RAG is a framework designed to evaluate whether RAG systems can handle unanswerable queries effectively.<n>We define a taxonomy with six unanswerable categories, and UAEval4RAG automatically synthesizes diverse and challenging queries.
arXiv Detail & Related papers (2024-12-16T19:11:55Z) - Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
Knowledge Graphs (KGs) can serve as reliable knowledge sources for question answering (QA)
We present DoG (Decoding on Graphs), a novel framework that facilitates a deep synergy between LLMs and KGs.
Experiments across various KGQA tasks with different background KGs demonstrate that DoG achieves superior and robust performance.
arXiv Detail & Related papers (2024-10-24T04:01:40Z) - RAGChecker: A Fine-grained Framework for Diagnosing Retrieval-Augmented Generation [61.14660526363607]
We propose a fine-grained evaluation framework, RAGChecker, that incorporates a suite of diagnostic metrics for both the retrieval and generation modules.
RAGChecker has significantly better correlations with human judgments than other evaluation metrics.
The metrics of RAGChecker can guide researchers and practitioners in developing more effective RAG systems.
arXiv Detail & Related papers (2024-08-15T10:20:54Z) - Generate-on-Graph: Treat LLM as both Agent and KG in Incomplete Knowledge Graph Question Answering [87.67177556994525]
We propose a training-free method called Generate-on-Graph (GoG) to generate new factual triples while exploring Knowledge Graphs (KGs)
GoG performs reasoning through a Thinking-Searching-Generating framework, which treats LLM as both Agent and KG in IKGQA.
arXiv Detail & Related papers (2024-04-23T04:47:22Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to leverage external knowledge.
Existing RAG models often treat LLMs as passive recipients of information.
We introduce ActiveRAG, a multi-agent framework that mimics human learning behavior.
arXiv Detail & Related papers (2024-02-21T06:04:53Z) - Collaborative Knowledge Graph Fusion by Exploiting the Open Corpus [59.20235923987045]
It is challenging to enrich a Knowledge Graph with newly harvested triples while maintaining the quality of the knowledge representation.
This paper proposes a system to refine a KG using information harvested from an additional corpus.
arXiv Detail & Related papers (2022-06-15T12:16:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.