SemanticSplat: Feed-Forward 3D Scene Understanding with Language-Aware Gaussian Fields
- URL: http://arxiv.org/abs/2506.09565v2
- Date: Fri, 13 Jun 2025 08:30:38 GMT
- Title: SemanticSplat: Feed-Forward 3D Scene Understanding with Language-Aware Gaussian Fields
- Authors: Qijing Li, Jingxiang Sun, Liang An, Zhaoqi Su, Hongwen Zhang, Yebin Liu,
- Abstract summary: Holistic 3D scene understanding is crucial for applications like augmented reality and robotic interaction.<n>Existing feed-forward 3D scene understanding methods (e.g., LSM) are limited to extracting language-based semantics from scenes.<n>We propose SemanticSplat, a feed-forward semantic-aware 3D reconstruction method.
- Score: 33.113865514268085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Holistic 3D scene understanding, which jointly models geometry, appearance, and semantics, is crucial for applications like augmented reality and robotic interaction. Existing feed-forward 3D scene understanding methods (e.g., LSM) are limited to extracting language-based semantics from scenes, failing to achieve holistic scene comprehension. Additionally, they suffer from low-quality geometry reconstruction and noisy artifacts. In contrast, per-scene optimization methods rely on dense input views, which reduces practicality and increases complexity during deployment. In this paper, we propose SemanticSplat, a feed-forward semantic-aware 3D reconstruction method, which unifies 3D Gaussians with latent semantic attributes for joint geometry-appearance-semantics modeling. To predict the semantic anisotropic Gaussians, SemanticSplat fuses diverse feature fields (e.g., LSeg, SAM) with a cost volume representation that stores cross-view feature similarities, enhancing coherent and accurate scene comprehension. Leveraging a two-stage distillation framework, SemanticSplat reconstructs a holistic multi-modal semantic feature field from sparse-view images. Experiments demonstrate the effectiveness of our method for 3D scene understanding tasks like promptable and open-vocabulary segmentation. Video results are available at https://semanticsplat.github.io.
Related papers
- UniForward: Unified 3D Scene and Semantic Field Reconstruction via Feed-Forward Gaussian Splatting from Only Sparse-View Images [43.40816438003861]
We propose a feed-forward model that unifies 3D scene and semantic field reconstruction.<n>Our UniForward can reconstruct 3D scenes and the corresponding semantic fields in real time from only sparse-view images.<n> Experiments on novel view synthesis and novel view segmentation demonstrate that our method achieves state-of-the-art performances.
arXiv Detail & Related papers (2025-06-11T04:01:21Z) - Tackling View-Dependent Semantics in 3D Language Gaussian Splatting [80.88015191411714]
LaGa establishes cross-view semantic connections by decomposing the 3D scene into objects.<n>It constructs view-aggregated semantic representations by clustering semantic descriptors and reweighting them based on multi-view semantics.<n>Under the same settings, LaGa achieves a significant improvement of +18.7% mIoU over the previous SOTA on the LERF-OVS dataset.
arXiv Detail & Related papers (2025-05-30T16:06:32Z) - Training-Free Hierarchical Scene Understanding for Gaussian Splatting with Superpoint Graphs [16.153129392697885]
We introduce a training-free framework that constructs a superpoint graph directly from Gaussian primitives.<n>The superpoint graph partitions the scene into spatially compact and semantically coherent regions, forming view-consistent 3D entities.<n>Our method achieves state-of-the-art open-vocabulary segmentation performance, with semantic field reconstruction completed over $30times$ faster.
arXiv Detail & Related papers (2025-04-17T17:56:07Z) - Occam's LGS: An Efficient Approach for Language Gaussian Splatting [57.00354758206751]
We show that the complicated pipelines for language 3D Gaussian Splatting are simply unnecessary.<n>We apply Occam's razor to the task at hand, leading to a highly efficient weighted multi-view feature aggregation technique.
arXiv Detail & Related papers (2024-12-02T18:50:37Z) - Bootstraping Clustering of Gaussians for View-consistent 3D Scene Understanding [59.51535163599723]
FreeGS is an unsupervised semantic-embedded 3DGS framework that achieves view-consistent 3D scene understanding without the need for 2D labels.<n>FreeGS performs comparably to state-of-the-art methods while avoiding the complex data preprocessing workload.
arXiv Detail & Related papers (2024-11-29T08:52:32Z) - Large Spatial Model: End-to-end Unposed Images to Semantic 3D [79.94479633598102]
Large Spatial Model (LSM) processes unposed RGB images directly into semantic radiance fields.
LSM simultaneously estimates geometry, appearance, and semantics in a single feed-forward operation.
It can generate versatile label maps by interacting with language at novel viewpoints.
arXiv Detail & Related papers (2024-10-24T17:54:42Z) - Semantic Gaussians: Open-Vocabulary Scene Understanding with 3D Gaussian Splatting [27.974762304763694]
We introduce Semantic Gaussians, a novel open-vocabulary scene understanding approach based on 3D Gaussian Splatting.
Unlike existing methods, we design a versatile projection approach that maps various 2D semantic features into a novel semantic component of 3D Gaussians.
We build a 3D semantic network that directly predicts the semantic component from raw 3D Gaussians for fast inference.
arXiv Detail & Related papers (2024-03-22T21:28:19Z) - HUGS: Holistic Urban 3D Scene Understanding via Gaussian Splatting [53.6394928681237]
holistic understanding of urban scenes based on RGB images is a challenging yet important problem.
Our main idea involves the joint optimization of geometry, appearance, semantics, and motion using a combination of static and dynamic 3D Gaussians.
Our approach offers the ability to render new viewpoints in real-time, yielding 2D and 3D semantic information with high accuracy.
arXiv Detail & Related papers (2024-03-19T13:39:05Z) - FMGS: Foundation Model Embedded 3D Gaussian Splatting for Holistic 3D Scene Understanding [11.118857208538039]
We present Foundation Model Embedded Gaussian Splatting (S), which incorporates vision-language embeddings of foundation models into 3D Gaussian Splatting (GS)
Results demonstrate remarkable multi-view semantic consistency, facilitating diverse downstream tasks, beating state-of-the-art methods by 10.2 percent on open-vocabulary language-based object detection.
This research explores the intersection of vision, language, and 3D scene representation, paving the way for enhanced scene understanding in uncontrolled real-world environments.
arXiv Detail & Related papers (2024-01-03T20:39:02Z) - Distilling Coarse-to-Fine Semantic Matching Knowledge for Weakly
Supervised 3D Visual Grounding [58.924180772480504]
3D visual grounding involves finding a target object in a 3D scene that corresponds to a given sentence query.
We propose to leverage weakly supervised annotations to learn the 3D visual grounding model.
We design a novel semantic matching model that analyzes the semantic similarity between object proposals and sentences in a coarse-to-fine manner.
arXiv Detail & Related papers (2023-07-18T13:49:49Z) - NeSF: Neural Semantic Fields for Generalizable Semantic Segmentation of
3D Scenes [25.26518805603798]
NeSF is a method for producing 3D semantic fields from posed RGB images alone.
Our method is the first to offer truly dense 3D scene segmentations requiring only 2D supervision for training.
arXiv Detail & Related papers (2021-11-25T21:44:54Z) - Semantic Implicit Neural Scene Representations With Semi-Supervised
Training [47.61092265963234]
We show that implicit neural scene representations can be leveraged to perform per-point semantic segmentation.
Our method is simple, general, and only requires a few tens of labeled 2D segmentation masks.
We explore two novel applications for this semantically aware implicit neural scene representation.
arXiv Detail & Related papers (2020-03-28T00:43:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.