Real-time adaptive tracking of fluctuating relaxation rates in superconducting qubits
- URL: http://arxiv.org/abs/2506.09576v1
- Date: Wed, 11 Jun 2025 10:14:23 GMT
- Title: Real-time adaptive tracking of fluctuating relaxation rates in superconducting qubits
- Authors: Fabrizio Berritta, Jacob Benestad, Jan A. Krzywda, Oswin Krause, Malthe A. Marciniak, Svend Krøjer, Christopher W. Warren, Emil Hogedal, Andreas Nylander, Irshad Ahmad, Amr Osman, Janka Biznárová, Marcus Rommel, Anita Fadavi Roudsari, Jonas Bylander, Giovanna Tancredi, Jeroen Danon, Jacob Hastrup, Ferdinand Kuemmeth, Morten Kjaergaard,
- Abstract summary: We present a real-time Bayesian method for estimating the relaxation rate of a qubit.<n>We adaptively and continuously track the relaxation-time fluctuations of two fixed-frequency superconducting transmon qubits.
- Score: 20.71280798614362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fidelity of operations on a solid-state quantum processor is ultimately bounded by decoherence effects induced by a fluctuating environment. Characterizing environmental fluctuations is challenging because the acquisition time of experimental protocols limits the precision with which the environment can be measured and may obscure the detailed structure of these fluctuations. Here we present a real-time Bayesian method for estimating the relaxation rate of a qubit, leveraging a classical controller with an integrated field-programmable gate array (FPGA). Using our FPGA-powered Bayesian method, we adaptively and continuously track the relaxation-time fluctuations of two fixed-frequency superconducting transmon qubits, which exhibit average relaxation times of approximately 0.17 ms and occasionally exceed 0.5 ms. Our technique allows for the estimation of these relaxation times in a few milliseconds, more than two orders of magnitude faster than previous nonadaptive methods, and allows us to observe fluctuations up to 5 times the qubit's average relaxation rates on significantly shorter timescales than previously reported. Our statistical analysis reveals that these fluctuations occur on much faster timescales than previously understood, with two-level-system switching rates reaching up to 10 Hz. Our work offers an appealing solution for rapid relaxation-rate characterization in device screening and for improved understanding of fast relaxation dynamics.
Related papers
- Fast-tracking and disentangling of qubit noise fluctuations using minimal-data averaging and hierarchical discrete fluctuation auto-segmentation [1.6555820134813155]
Qubit noise and fluctuations of the noise over time are key factors limiting performance of quantum computers.<n>Characterising them with high temporal resolution is challenging due to multiple overlapping processes such as discrete jumps and continuous drifts.<n>We develop a framework comprising a noise characterisation method with minimal measurements allowing high temporal resolution.<n>We show that on transmon qubits the method can track and disentangle qubit frequency fluctuations with temporal resolution of a few tens of milliseconds over hours.
arXiv Detail & Related papers (2025-05-29T16:29:03Z) - Optimal Low-Depth Quantum Signal-Processing Phase Estimation [0.029541734875307393]
Quantum effects like entanglement can be used to drastically enhance the accuracy of quantum parameter estimation beyond classical limits.<n>We introduce Quantum Signal-Processing Phase Estimation algorithms that are robust against these challenges.<n>Our approach achieves a standard deviation accuracy of $10-4$ radians for estimating unwanted swap angles in superconducting two-qubit experiments.
arXiv Detail & Related papers (2024-06-17T10:33:52Z) - Model-based Optimization of Superconducting Qubit Readout [59.992881941624965]
We demonstrate model-based readout optimization for superconducting qubits.
We observe 1.5% error per qubit with a 500ns end-to-end duration and minimal excess reset error from residual resonator photons.
This technique can scale to hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term applications.
arXiv Detail & Related papers (2023-08-03T23:30:56Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Real-time adaptive estimation of decoherence timescales for a single
qubit [2.6938732235832044]
Characterising the time over which quantum coherence survives is critical for any implementation of quantum bits, memories and sensors.
We present an adaptive multi- parameter approach, based on a simple analytical update rule, to estimate the key decoherence in real time.
A further speed-up of a factor $sim 2$ can be realised by performing our optimisation with respect to sensitivity as opposed to variance.
arXiv Detail & Related papers (2022-10-12T11:28:23Z) - Fast Quantum Calibration using Bayesian Optimization with State
Parameter Estimator for Non-Markovian Environment [11.710177724383954]
We propose a real-time optimal estimator of qubit states, which utilizes weak measurements and Bayesian optimization to find the optimal control pulses for gate design.
Our numerical results demonstrate a significant reduction in the calibration process, obtaining a high gate fidelity.
arXiv Detail & Related papers (2022-05-25T17:31:15Z) - Robust spin relaxometry with fast adaptive Bayesian estimation [0.0]
We show that adaptive Bayesian estimation is well suited to this problem, producing dynamic relaxometry pulse sequences that rapidly find an optimal operating regime.
We also present a four-signal measurement protocol that is robust to drifts in spin readout contrast, polarization, and microwave pulse fidelity while still achieving near-optimal sensitivity.
arXiv Detail & Related papers (2022-02-24T17:30:26Z) - Stabilization of Qubit Relaxation Rates by Frequency Modulation [68.8204255655161]
Temporal, spectral, and sample-to-sample fluctuations in coherence properties of qubits form an outstanding challenge for the development of upscaled fault-tolerant quantum computers.
A ubiquitous source for these fluctuations in superconducting qubits is a set of atomic-scale defects with a two-level structure.
We show that frequency modulation of a qubit or, alternatively, of the two-level defects, leads to averaging of the qubit relaxation rate over a wide interval of frequencies.
arXiv Detail & Related papers (2021-04-08T11:32:03Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.