Beyond Overconfidence: Foundation Models Redefine Calibration in Deep Neural Networks
- URL: http://arxiv.org/abs/2506.09593v1
- Date: Wed, 11 Jun 2025 10:48:36 GMT
- Title: Beyond Overconfidence: Foundation Models Redefine Calibration in Deep Neural Networks
- Authors: Achim Hekler, Lukas Kuhn, Florian Buettner,
- Abstract summary: Deep neural networks are known to exhibit systematic overconfidence, especially under distribution shifts.<n>This paper presents a comprehensive investigation into the calibration behavior of foundation models.
- Score: 11.21724937864103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reliable uncertainty calibration is essential for safely deploying deep neural networks in high-stakes applications. Deep neural networks are known to exhibit systematic overconfidence, especially under distribution shifts. Although foundation models such as ConvNeXt, EVA and BEiT have demonstrated significant improvements in predictive performance, their calibration properties remain underexplored. This paper presents a comprehensive investigation into the calibration behavior of foundation models, revealing insights that challenge established paradigms. Our empirical analysis shows that these models tend to be underconfident in in-distribution predictions, resulting in higher calibration errors, while demonstrating improved calibration under distribution shifts. Furthermore, we demonstrate that foundation models are highly responsive to post-hoc calibration techniques in the in-distribution setting, enabling practitioners to effectively mitigate underconfidence bias. However, these methods become progressively less reliable under severe distribution shifts and can occasionally produce counterproductive results. Our findings highlight the complex, non-monotonic effects of architectural and training innovations on calibration, challenging established narratives of continuous improvement.
Related papers
- Balancing Two Classifiers via A Simplex ETF Structure for Model Calibration [34.52946891778497]
Deep neural networks (DNNs) have demonstrated state-of-the-art performance across various domains.<n>They often face calibration issues, particularly in safety-critical applications such as autonomous driving and healthcare.<n>Recent research has started to improve model calibration from the view of the classifier.
arXiv Detail & Related papers (2025-04-14T09:09:01Z) - Enhancing Healthcare LLM Trust with Atypical Presentations Recalibration [20.049443396032423]
Black-box large language models (LLMs) are increasingly deployed in various environments.
LLMs often exhibit overconfidence, leading to potential risks and misjudgments.
We propose a novel method, textitAtypical presentations Recalibration, which leverages atypical presentations to adjust the model's confidence estimates.
arXiv Detail & Related papers (2024-09-05T03:45:35Z) - Towards Calibrated Deep Clustering Network [60.71776081164377]
In deep clustering, the estimated confidence for a sample belonging to a particular cluster greatly exceeds its actual prediction accuracy.<n>We propose a novel dual head (calibration head and clustering head) deep clustering model that can effectively calibrate the estimated confidence and the actual accuracy.<n>The proposed calibrated deep clustering model not only surpasses the state-of-the-art deep clustering methods by 5x on average in terms of expected calibration error, but also significantly outperforms them in terms of clustering accuracy.
arXiv Detail & Related papers (2024-03-04T11:23:40Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
Recent studies reveal that deep neural networks (DNNs) are prone to making overconfident predictions.
We propose a new train-time calibration method, which features a simple, plug-and-play auxiliary loss known as multi-class alignment of predictive mean confidence and predictive certainty (MACC)
Our method achieves state-of-the-art calibration performance for both in-domain and out-domain predictions.
arXiv Detail & Related papers (2023-09-06T00:56:24Z) - On the Limitations of Temperature Scaling for Distributions with
Overlaps [8.486166869140929]
We show that for empirical risk minimizers for a general set of distributions, the performance of temperature scaling degrades with the amount of overlap between classes.
We prove that optimizing a modified form of the empirical risk induced by the Mixup data augmentation technique can in fact lead to reasonably good calibration performance.
arXiv Detail & Related papers (2023-06-01T14:35:28Z) - Calibration-Aware Bayesian Learning [37.82259435084825]
This paper proposes an integrated framework, referred to as calibration-aware Bayesian neural networks (CA-BNNs)
It applies both data-dependent or data-independent regularizers while optimizing over a variational distribution as in Bayesian learning.
Numerical results validate the advantages of the proposed approach in terms of expected calibration error (ECE) and reliability diagrams.
arXiv Detail & Related papers (2023-05-12T14:19:15Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - On the Dark Side of Calibration for Modern Neural Networks [65.83956184145477]
We show the breakdown of expected calibration error (ECE) into predicted confidence and refinement.
We highlight that regularisation based calibration only focuses on naively reducing a model's confidence.
We find that many calibration approaches with the likes of label smoothing, mixup etc. lower the utility of a DNN by degrading its refinement.
arXiv Detail & Related papers (2021-06-17T11:04:14Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Calibrate and Prune: Improving Reliability of Lottery Tickets Through
Prediction Calibration [40.203492372949576]
Supervised models with uncalibrated confidences tend to be overconfident even when making wrong prediction.
We study how explicit confidence calibration in the over- parameterized network impacts the quality of the resulting lottery tickets.
Our empirical studies reveal that including calibration mechanisms consistently lead to more effective lottery tickets.
arXiv Detail & Related papers (2020-02-10T15:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.