GLGENN: A Novel Parameter-Light Equivariant Neural Networks Architecture Based on Clifford Geometric Algebras
- URL: http://arxiv.org/abs/2506.09625v1
- Date: Wed, 11 Jun 2025 11:32:51 GMT
- Title: GLGENN: A Novel Parameter-Light Equivariant Neural Networks Architecture Based on Clifford Geometric Algebras
- Authors: Ekaterina Filimoshina, Dmitry Shirokov,
- Abstract summary: We propose, implement, and compare with competitors a new architecture of equivariant neural networks based on geometric algebras: Generalized Lipschitz Group Equivariant Neural Networks (GLGENN)<n>These networks are equivariant to all pseudo-orthogonal transformations, including rotations and reflections, of a vector space with any non-degenerate or symmetric bilinear form.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose, implement, and compare with competitors a new architecture of equivariant neural networks based on geometric (Clifford) algebras: Generalized Lipschitz Group Equivariant Neural Networks (GLGENN). These networks are equivariant to all pseudo-orthogonal transformations, including rotations and reflections, of a vector space with any non-degenerate or degenerate symmetric bilinear form. We propose a weight-sharing parametrization technique that takes into account the fundamental structures and operations of geometric algebras. Due to this technique, GLGENN architecture is parameter-light and has less tendency to overfitting than baseline equivariant models. GLGENN outperforms or matches competitors on several benchmarking equivariant tasks, including estimation of an equivariant function and a convex hull experiment, while using significantly fewer optimizable parameters.
Related papers
- Geometry-Informed Neural Operator Transformer [0.8906214436849201]
This work introduces the Geometry-Informed Neural Operator Transformer (GINOT), which integrates the transformer architecture with the neural operator framework to enable forward predictions on arbitrary geometries.<n>The performance of GINOT is validated on multiple challenging datasets, showcasing its high accuracy and strong generalization capabilities for complex and arbitrary 2D and 3D geometries.
arXiv Detail & Related papers (2025-04-28T03:39:27Z) - Incorporating Arbitrary Matrix Group Equivariance into KANs [69.30866522377694]
We propose Equivariant Kolmogorov-Arnold Networks (EKAN), a method for incorporating arbitrary matrix group equivariants into KANs.<n>EKAN achieves higher accuracy with smaller datasets or fewer parameters on symmetry-related tasks, such as particle scattering and the three-body problem.
arXiv Detail & Related papers (2024-10-01T06:34:58Z) - Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks [5.187307904567701]
Group Matrices (GMs) are forgotten precursor to modern notion of regular representations of finite groups.<n>We show GMs can generalize classical LDR theory to general discrete groups.<n>Our framework performs competitively with approximately equivariant NNs and other structured matrix-based methods.
arXiv Detail & Related papers (2024-09-18T07:52:33Z) - Optimization Dynamics of Equivariant and Augmented Neural Networks [2.7918308693131135]
We investigate the optimization of neural networks on symmetric data.
We compare the strategy of constraining the architecture to be equivariant to that of using data augmentation.
Our analysis reveals that even in the latter situation, stationary points may be unstable for augmented training although they are stable for the manifestly equivariant models.
arXiv Detail & Related papers (2023-03-23T17:26:12Z) - Geometric Clifford Algebra Networks [53.456211342585824]
We propose Geometric Clifford Algebra Networks (GCANs) for modeling dynamical systems.
GCANs are based on symmetry group transformations using geometric (Clifford) algebras.
arXiv Detail & Related papers (2023-02-13T18:48:33Z) - PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant
Aggregator Network for Particle Physics [64.5726087590283]
We present a machine learning architecture that uses a set of inputs maximally reduced with respect to the full 6-dimensional Lorentz symmetry.
We show that the resulting network outperforms all existing competitors despite much lower model complexity.
arXiv Detail & Related papers (2022-11-01T13:36:50Z) - Architectural Optimization over Subgroups for Equivariant Neural
Networks [0.0]
We propose equivariance relaxation morphism and $[G]$-mixed equivariant layer to operate with equivariance constraints on a subgroup.
We present evolutionary and differentiable neural architecture search (NAS) algorithms that utilize these mechanisms respectively for equivariance-aware architectural optimization.
arXiv Detail & Related papers (2022-10-11T14:37:29Z) - Equivariant vector field network for many-body system modeling [65.22203086172019]
Equivariant Vector Field Network (EVFN) is built on a novel equivariant basis and the associated scalarization and vectorization layers.
We evaluate our method on predicting trajectories of simulated Newton mechanics systems with both full and partially observed data.
arXiv Detail & Related papers (2021-10-26T14:26:25Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
We introduce Frame Averaging (FA), a framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types.
We show that FA-based models have maximal expressive power in a broad setting.
We propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs.
arXiv Detail & Related papers (2021-10-07T11:05:23Z) - Generalization capabilities of translationally equivariant neural
networks [0.0]
In this work, we focus on complex scalar field theory on a two-dimensional lattice and investigate the benefits of using group equivariant convolutional neural network architectures.
For a meaningful comparison, we conduct a systematic search for equivariant and non-equivariant neural network architectures and apply them to various regression and classification tasks.
We demonstrate that our best equivariant architectures can perform and generalize significantly better than their non-equivariant counterparts.
arXiv Detail & Related papers (2021-03-26T18:53:36Z) - Lorentz Group Equivariant Neural Network for Particle Physics [58.56031187968692]
We present a neural network architecture that is fully equivariant with respect to transformations under the Lorentz group.
For classification tasks in particle physics, we demonstrate that such an equivariant architecture leads to drastically simpler models that have relatively few learnable parameters.
arXiv Detail & Related papers (2020-06-08T17:54:43Z) - Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
graphs [81.12344211998635]
A common approach to define convolutions on meshes is to interpret them as a graph and apply graph convolutional networks (GCNs)
We propose Gauge Equivariant Mesh CNNs which generalize GCNs to apply anisotropic gauge equivariant kernels.
Our experiments validate the significantly improved expressivity of the proposed model over conventional GCNs and other methods.
arXiv Detail & Related papers (2020-03-11T17:21:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.