Advancing Exchange Rate Forecasting: Leveraging Machine Learning and AI for Enhanced Accuracy in Global Financial Markets
- URL: http://arxiv.org/abs/2506.09851v1
- Date: Wed, 11 Jun 2025 15:22:07 GMT
- Title: Advancing Exchange Rate Forecasting: Leveraging Machine Learning and AI for Enhanced Accuracy in Global Financial Markets
- Authors: Md. Yeasin Rahat, Rajan Das Gupta, Nur Raisa Rahman, Sudipto Roy Pritom, Samiur Rahman Shakir, Md Imrul Hasan Showmick, Md. Jakir Hossen,
- Abstract summary: This study leverages historical USD/BDT exchange rate data from 2018 to 2023, sourced from Yahoo Finance.<n>A Long Short-Term Memory (LSTM) neural network is employed, achieving an exceptional accuracy of 99.449%.<n>A Gradient Boosting (GBC) is applied for directional prediction, with backtesting on a $10,000 initial capital revealing a 40.82% profitable trade rate.<n>The study analyzes historical trends, showing a decline in BDT/USD rates from 0.012 to 0.009, and incorporates normalized daily returns to capture volatility.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The prediction of foreign exchange rates, such as the US Dollar (USD) to Bangladeshi Taka (BDT), plays a pivotal role in global financial markets, influencing trade, investments, and economic stability. This study leverages historical USD/BDT exchange rate data from 2018 to 2023, sourced from Yahoo Finance, to develop advanced machine learning models for accurate forecasting. A Long Short-Term Memory (LSTM) neural network is employed, achieving an exceptional accuracy of 99.449%, a Root Mean Square Error (RMSE) of 0.9858, and a test loss of 0.8523, significantly outperforming traditional methods like ARIMA (RMSE 1.342). Additionally, a Gradient Boosting Classifier (GBC) is applied for directional prediction, with backtesting on a $10,000 initial capital revealing a 40.82% profitable trade rate, though resulting in a net loss of $20,653.25 over 49 trades. The study analyzes historical trends, showing a decline in BDT/USD rates from 0.012 to 0.009, and incorporates normalized daily returns to capture volatility. These findings highlight the potential of deep learning in forex forecasting, offering traders and policymakers robust tools to mitigate risks. Future work could integrate sentiment analysis and real-time economic indicators to further enhance model adaptability in volatile markets.
Related papers
- Cryptocurrency Price Forecasting Using Machine Learning: Building Intelligent Financial Prediction Models [1.252620193191587]
We introduce two important liquidity proxy metrics: the Volume-To-Volatility Ratio (VVR) and the Volume-Weighted Average Price (VWAP)<n>These metrics provide a clearer understanding of market stability and liquidity, ultimately enhancing the accuracy of our price predictions.<n>Our findings offer valuable insights for traders and developers seeking to create smarter and more risk-aware strategies in the U.S. digital assets market.
arXiv Detail & Related papers (2025-08-02T15:54:41Z) - Pursuing Top Growth with Novel Loss Function [0.5312311916594153]
We aim to further enhance AI's potential and utility by introducing a return-weighted loss function that will drive top growth.<n>Our best models achieve 61.73% annual return on daily rebalancing with an annualized Sharpe Ratio of 1.18 over 1340 testing days from 2019 to 2024.<n>We also demonstrate the superiority of our novel loss function over traditional loss functions via several performance metrics and statistical evidence.
arXiv Detail & Related papers (2025-02-20T21:43:51Z) - Enhancing Exchange Rate Forecasting with Explainable Deep Learning Models [1.5474412217744966]
Traditional forecasting models often falter when addressing the inherent complexities and non-linearities of exchange rate data.
This study explores the application of advanced deep learning models, including LSTM, CNN, and transformer-based architectures, to enhance the predictive accuracy of the RMB/USD exchange rate.
arXiv Detail & Related papers (2024-10-25T01:29:54Z) - Comparative Analysis of LSTM, GRU, and Transformer Models for Stock Price Prediction [0.9217021281095907]
This paper takes AI driven stock price trend prediction as the core research.
It makes a model training data set of famous Tesla cars from 2015 to 2024, and compares LSTM, GRU, and Transformer Models.
The experimental results show that the accuracy of the LSTM model is 94%.
arXiv Detail & Related papers (2024-10-20T14:00:58Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Feature Learning for Stock Price Prediction Shows a Significant Role of
Analyst Rating [0.38073142980733]
A set of 5 technical indicators and 23 fundamental indicators was identified to establish the possibility of generating excess returns on the stock market.
From any given day, we were able to predict the direction of change in price by 1% up to 10 days in the future.
The predictions had an overall accuracy of 83.62% with a precision of 85% for buy signals and a recall of 100% for sell signals.
arXiv Detail & Related papers (2021-03-13T03:56:29Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.