Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing
- URL: http://arxiv.org/abs/2506.09965v2
- Date: Thu, 19 Jun 2025 03:46:55 GMT
- Title: Reinforcing Spatial Reasoning in Vision-Language Models with Interwoven Thinking and Visual Drawing
- Authors: Junfei Wu, Jian Guan, Kaituo Feng, Qiang Liu, Shu Wu, Liang Wang, Wei Wu, Tieniu Tan,
- Abstract summary: Drawing to reason in space is a novel paradigm that enables LVLMs to reason through elementary drawing operations in the visual space.<n>Our model, named VILASR, consistently outperforms existing methods across diverse spatial reasoning benchmarks.
- Score: 62.447497430479174
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As textual reasoning with large language models (LLMs) has advanced significantly, there has been growing interest in enhancing the multimodal reasoning capabilities of large vision-language models (LVLMs). However, existing methods primarily approach multimodal reasoning in a straightforward, text-centric manner, where both reasoning and answer derivation are conducted purely through text, with the only difference being the presence of multimodal input. As a result, these methods often encounter fundamental limitations in spatial reasoning tasks that demand precise geometric understanding and continuous spatial tracking-capabilities that humans achieve through mental visualization and manipulation. To address the limitations, we propose drawing to reason in space, a novel paradigm that enables LVLMs to reason through elementary drawing operations in the visual space. By equipping models with basic drawing operations, including annotating bounding boxes and drawing auxiliary lines, we empower them to express and analyze spatial relationships through direct visual manipulation, meanwhile avoiding the performance ceiling imposed by specialized perception tools in previous tool-integrated reasoning approaches. To cultivate this capability, we develop a three-stage training framework: cold-start training with synthetic data to establish basic drawing abilities, reflective rejection sampling to enhance self-reflection behaviors, and reinforcement learning to directly optimize for target rewards. Extensive experiments demonstrate that our model, named VILASR, consistently outperforms existing methods across diverse spatial reasoning benchmarks, involving maze navigation, static spatial reasoning, video-based reasoning, and multi-view-based reasoning tasks, with an average improvement of 18.4%.
Related papers
- Perceptual Decoupling for Scalable Multi-modal Reasoning via Reward-Optimized Captioning [78.17782197231325]
We propose a reasoning-guided reinforcement learning strategy that aligns the extractor's captioning behavior with the reasoning objective.<n> Experiments on multi-modal math and science benchmarks show that the proposed RACRO method achieves state-of-the-art average performance.
arXiv Detail & Related papers (2025-06-05T02:28:07Z) - Decoupled Visual Interpretation and Linguistic Reasoning for Math Problem Solving [57.22004912994658]
Current large vision-language models (LVLMs) typically employ a connector module to link visual features with text embeddings of large language models (LLMs)<n>This paper proposes a paradigm shift: instead of training end-to-end vision-language reasoning models, we advocate for developing a decoupled reasoning framework.
arXiv Detail & Related papers (2025-05-23T08:18:00Z) - ManipLVM-R1: Reinforcement Learning for Reasoning in Embodied Manipulation with Large Vision-Language Models [26.955482205849282]
Large Vision-Language Models (LVLMs) have recently advanced robotic manipulation by leveraging vision for scene perception and language for instruction following.<n>We propose ManipLVM-R1, a novel reinforcement learning framework that replaces traditional supervision with Reinforcement Learning using Verifiable Rewards (RLVR).
arXiv Detail & Related papers (2025-05-22T10:57:07Z) - DeepEyes: Incentivizing "Thinking with Images" via Reinforcement Learning [11.242852367476015]
DeepEyes is a model with "thinking with images" capabilities incentivized through end-to-end reinforcement learning.<n>We propose a tool-use-oriented data selection mechanism and a reward strategy to encourage successful tool-assisted reasoning trajectories.<n>DeepEyes achieves significant performance gains on fine-grained perception and reasoning benchmarks.
arXiv Detail & Related papers (2025-05-20T13:48:11Z) - Embodied-R: Collaborative Framework for Activating Embodied Spatial Reasoning in Foundation Models via Reinforcement Learning [58.86928947970342]
Embodied-R is a framework combining large-scale Vision-Language Models for perception and small-scale Language Models for reasoning.<n>After training on only 5k embodied video samples, Embodied-R with a 3B LM matches state-of-the-art multimodal reasoning models.<n>Embodied-R also exhibits emergent thinking patterns such as systematic analysis and contextual integration.
arXiv Detail & Related papers (2025-04-17T06:16:11Z) - SPHERE: Unveiling Spatial Blind Spots in Vision-Language Models Through Hierarchical Evaluation [7.659514491338669]
Current vision-language models may grasp basic spatial cues but struggle with the multi-dimensional spatial reasoning necessary for human-like understanding and real-world applications.<n>We develop SPHERE, a hierarchical evaluation framework supported by a new human-annotated dataset.<n> Benchmark evaluation of state-of-the-art models reveals significant deficiencies, especially in reasoning about distance and proximity.
arXiv Detail & Related papers (2024-12-17T09:10:55Z) - Sparkle: Mastering Basic Spatial Capabilities in Vision Language Models Elicits Generalization to Spatial Reasoning [19.399925987942204]
Vision language models (VLMs) have demonstrated impressive performance across a wide range of downstream tasks.<n>Most tasks rely on the core spatial reasoning capabilities in two-dimensional (2D) environments.<n>We introduce Sparkle: a framework that uses synthetic data generation to provide targeted supervision for vision language models (VLMs) in three basic spatial capabilities.
arXiv Detail & Related papers (2024-10-21T16:26:09Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - PALM: Predicting Actions through Language Models [74.10147822693791]
We introduce PALM, an approach that tackles the task of long-term action anticipation.
Our method incorporates an action recognition model to track previous action sequences and a vision-language model to articulate relevant environmental details.
Our experimental results demonstrate that PALM surpasses the state-of-the-art methods in the task of long-term action anticipation.
arXiv Detail & Related papers (2023-11-29T02:17:27Z) - Improving Vision-and-Language Reasoning via Spatial Relations Modeling [30.477235227733928]
Visual commonsense reasoning (VCR) is a challenging multi-modal task.
The proposed method can guide the representations to maintain more spatial context.
We achieve the state-of-the-art results on VCR and two other vision-and-language reasoning tasks VQA, and NLVR.
arXiv Detail & Related papers (2023-11-09T11:54:55Z) - Visual Chain of Thought: Bridging Logical Gaps with Multimodal
Infillings [61.04460792203266]
We introduce VCoT, a novel method that leverages chain-of-thought prompting with vision-language grounding to bridge the logical gaps within sequential data.
Our method uses visual guidance to generate synthetic multimodal infillings that add consistent and novel information to reduce the logical gaps for downstream tasks.
arXiv Detail & Related papers (2023-05-03T17:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.