InterActHuman: Multi-Concept Human Animation with Layout-Aligned Audio Conditions
- URL: http://arxiv.org/abs/2506.09984v1
- Date: Wed, 11 Jun 2025 17:57:09 GMT
- Title: InterActHuman: Multi-Concept Human Animation with Layout-Aligned Audio Conditions
- Authors: Zhenzhi Wang, Jiaqi Yang, Jianwen Jiang, Chao Liang, Gaojie Lin, Zerong Zheng, Ceyuan Yang, Dahua Lin,
- Abstract summary: End-to-end human animation with rich multi-modal conditions has achieved remarkable advancements in recent years.<n>Most existing methods could only animate a single subject and inject conditions in a global manner.<n>We introduce a novel framework that enforces strong, region-specific binding of conditions from modalities to each identity'stemporal footprint.
- Score: 70.63690961790573
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: End-to-end human animation with rich multi-modal conditions, e.g., text, image and audio has achieved remarkable advancements in recent years. However, most existing methods could only animate a single subject and inject conditions in a global manner, ignoring scenarios that multiple concepts could appears in the same video with rich human-human interactions and human-object interactions. Such global assumption prevents precise and per-identity control of multiple concepts including humans and objects, therefore hinders applications. In this work, we discard the single-entity assumption and introduce a novel framework that enforces strong, region-specific binding of conditions from modalities to each identity's spatiotemporal footprint. Given reference images of multiple concepts, our method could automatically infer layout information by leveraging a mask predictor to match appearance cues between the denoised video and each reference appearance. Furthermore, we inject local audio condition into its corresponding region to ensure layout-aligned modality matching in a iterative manner. This design enables the high-quality generation of controllable multi-concept human-centric videos. Empirical results and ablation studies validate the effectiveness of our explicit layout control for multi-modal conditions compared to implicit counterparts and other existing methods.
Related papers
- HunyuanVideo-HOMA: Generic Human-Object Interaction in Multimodal Driven Human Animation [26.23483219159567]
HunyuanVideo-HOMA is a weakly conditioned multimodal-driven framework.<n>It encodes appearance and motion signals into the dual input space of a multimodal diffusion transformer.<n>It synthesizes anatomically temporally consistent and physically plausible interactions.
arXiv Detail & Related papers (2025-06-10T13:45:00Z) - Multi-identity Human Image Animation with Structural Video Diffusion [64.20452431561436]
We present Structural Video Diffusion, a novel framework for generating realistic multi-human videos.<n>Our approach introduces identity-specific embeddings to maintain consistent appearances across individuals.<n>We expand existing human video dataset with 25K new videos featuring diverse multi-human and object interaction scenarios.
arXiv Detail & Related papers (2025-04-05T10:03:49Z) - Consistent Human Image and Video Generation with Spatially Conditioned Diffusion [82.4097906779699]
Consistent human-centric image and video synthesis aims to generate images with new poses while preserving appearance consistency with a given reference image.<n>We frame the task as a spatially-conditioned inpainting problem, where the target image is in-painted to maintain appearance consistency with the reference.<n>This approach enables the reference features to guide the generation of pose-compliant targets within a unified denoising network.
arXiv Detail & Related papers (2024-12-19T05:02:30Z) - Hallo: Hierarchical Audio-Driven Visual Synthesis for Portrait Image Animation [29.87407471246318]
This research delves into the complexities of synchronizing facial movements and creating visually appealing, temporally consistent animations.
Our innovative approach embraces the end-to-end diffusion paradigm and introduces a hierarchical audio-driven visual synthesis module.
The proposed hierarchical audio-driven visual synthesis offers adaptive control over expression and pose diversity, enabling more effective personalization tailored to different identities.
arXiv Detail & Related papers (2024-06-13T04:33:20Z) - From Parts to Whole: A Unified Reference Framework for Controllable Human Image Generation [19.096741614175524]
Parts2Whole is a novel framework designed for generating customized portraits from multiple reference images.
We first develop a semantic-aware appearance encoder to retain details of different human parts.
Second, our framework supports multi-image conditioned generation through a shared self-attention mechanism.
arXiv Detail & Related papers (2024-04-23T17:56:08Z) - Purposer: Putting Human Motion Generation in Context [30.706219830149504]
We present a novel method to generate human motion to populate 3D indoor scenes.
It can be controlled with various combinations of conditioning signals such as a path in a scene, target poses, past motions, and scenes represented as 3D point clouds.
arXiv Detail & Related papers (2024-04-19T15:16:04Z) - FaceChain-ImagineID: Freely Crafting High-Fidelity Diverse Talking Faces from Disentangled Audio [45.71036380866305]
We abstract the process of people hearing speech, extracting meaningful cues, and creating dynamically audio-consistent talking faces from a single audio.
Specifically, it involves two critical challenges: one is to effectively decouple identity, content, and emotion from entangled audio, and the other is to maintain intra-video diversity and inter-video consistency.
We introduce the Controllable Coherent Frame generation, which involves the flexible integration of three trainable adapters with frozen Latent Diffusion Models.
arXiv Detail & Related papers (2024-03-04T09:59:48Z) - Break-A-Scene: Extracting Multiple Concepts from a Single Image [80.47666266017207]
We introduce the task of textual scene decomposition.
We propose augmenting the input image with masks that indicate the presence of target concepts.
We then present a novel two-phase customization process.
arXiv Detail & Related papers (2023-05-25T17:59:04Z) - Neural Rendering of Humans in Novel View and Pose from Monocular Video [68.37767099240236]
We introduce a new method that generates photo-realistic humans under novel views and poses given a monocular video as input.
Our method significantly outperforms existing approaches under unseen poses and novel views given monocular videos as input.
arXiv Detail & Related papers (2022-04-04T03:09:20Z) - Audio-Visual Fusion Layers for Event Type Aware Video Recognition [86.22811405685681]
We propose a new model to address the multisensory integration problem with individual event-specific layers in a multi-task learning scheme.
We show that our network is formulated with single labels, but it can output additional true multi-labels to represent the given videos.
arXiv Detail & Related papers (2022-02-12T02:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.