The Effects of GitHub Copilot on Computing Students' Programming Effectiveness, Efficiency, and Processes in Brownfield Programming Tasks
- URL: http://arxiv.org/abs/2506.10051v1
- Date: Wed, 11 Jun 2025 16:18:53 GMT
- Title: The Effects of GitHub Copilot on Computing Students' Programming Effectiveness, Efficiency, and Processes in Brownfield Programming Tasks
- Authors: Md Istiak Hossain Shihab, Christopher Hundhausen, Ahsun Tariq, Summit Haque, Yunhan Qiao, Brian Mulanda,
- Abstract summary: GitHub Copilot is a generative artificial intelligence (GenAI) coding assistant.<n>This paper investigates how GitHub Copilot influences undergraduate students' programming performance, behaviors, and understanding.
- Score: 0.6282171844772422
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When graduates of computing degree programs enter the software industry, they will most likely join teams working on legacy code bases developed by people other than themselves. In these so-called brownfield software development settings, generative artificial intelligence (GenAI) coding assistants like GitHub Copilot are rapidly transforming software development practices, yet the impact of GenAI on student programmers performing brownfield development tasks remains underexplored. This paper investigates how GitHub Copilot influences undergraduate students' programming performance, behaviors, and understanding when completing brownfield programming tasks in which they add new code to an unfamiliar code base. We conducted a controlled experiment in which 10 undergraduate computer science students completed highly similar brownfield development tasks with and without Copilot in a legacy web application. Using a mixed-methods approach combining performance analysis, behavioral analysis, and exit interviews, we found that students completed tasks 35% faster (p < 0.05) and made 50% more solution progress p (< 0.05) when using Copilot. Moreover, our analysis revealed that, when using Copilot, students spent 11% less time manually writing code (p < 0.05), and 12% less time conducting web searches (p < 0.05), providing evidence of a fundamental shift in how they engaged in programming. In exit interviews, students reported concerns about not understanding how or why Copilot suggestions work. This research suggests the need for computing educators to develop new pedagogical approaches that leverage GenAI assistants' benefits while fostering reflection on how and why GenAI suggestions address brownfield programming tasks. Complete study results and analysis are presented at https://ghcopilot-icer.github.io/.
Related papers
- A Human Centric Requirements Engineering Framework for Assessing Github Copilot Output [0.0]
GitHub Copilot introduces new challenges in how these software tools address human needs.<n>I analyzed GitHub Copilot's interaction with users through its chat interface.<n>I established a human-centered requirements framework with clear metrics to evaluate these qualities.
arXiv Detail & Related papers (2025-08-05T21:33:23Z) - Code with Me or for Me? How Increasing AI Automation Transforms Developer Workflows [66.1850490474361]
We conduct the first academic study to explore developer interactions with coding agents.<n>We evaluate two leading copilot and agentic coding assistants, GitHub Copilot and OpenHands.<n>Our results show agents have the potential to assist developers in ways that surpass copilots.
arXiv Detail & Related papers (2025-07-10T20:12:54Z) - From Developer Pairs to AI Copilots: A Comparative Study on Knowledge Transfer [8.567835367628787]
With the rise of AI coding assistants, developers now not only work with human partners but also, as some claim, with AI pair programmers.<n>To analyze knowledge transfer in both human-human and human-AI settings, we conducted an empirical study.<n>We found a similar frequency of successful knowledge transfer episodes and overlapping topical categories across both settings.
arXiv Detail & Related papers (2025-06-05T09:13:30Z) - SwingArena: Competitive Programming Arena for Long-context GitHub Issue Solving [90.32201622392137]
We present SwingArena, a competitive evaluation framework for Large Language Models (LLMs)<n>Unlike traditional static benchmarks, SwingArena models the collaborative process of software by pairing LLMs as iterations, who generate patches, and reviewers, who create test cases and verify the patches through continuous integration (CI) pipelines.
arXiv Detail & Related papers (2025-05-29T18:28:02Z) - OpenHands: An Open Platform for AI Software Developers as Generalist Agents [109.8507367518992]
We introduce OpenHands, a platform for the development of AI agents that interact with the world in similar ways to a human developer.<n>We describe how the platform allows for the implementation of new agents, safe interaction with sandboxed environments for code execution, and incorporation of evaluation benchmarks.
arXiv Detail & Related papers (2024-07-23T17:50:43Z) - Impact of the Availability of ChatGPT on Software Development: A Synthetic Difference in Differences Estimation using GitHub Data [49.1574468325115]
ChatGPT is an AI tool that enhances software production efficiency.
We estimate ChatGPT's effects on the number of git pushes, repositories, and unique developers per 100,000 people.
These results suggest that AI tools like ChatGPT can substantially boost developer productivity, though further analysis is needed to address potential downsides such as low quality code and privacy concerns.
arXiv Detail & Related papers (2024-06-16T19:11:15Z) - Transforming Software Development with Generative AI: Empirical Insights on Collaboration and Workflow [2.6124032579630114]
Generative AI (GenAI) has fundamentally changed how knowledge workers, such as software developers, solve tasks and collaborate to build software products.
Introducing innovative tools like ChatGPT and Copilot has created new opportunities to assist and augment software developers across various problems.
Our study reveals that ChatGPT signifies a paradigm shift in the workflow of software developers. The technology empowers developers by enabling them to work more efficiently, speed up the learning process, and increase motivation by reducing tedious and repetitive tasks.
arXiv Detail & Related papers (2024-02-12T12:36:29Z) - The Impact of AI Tool on Engineering at ANZ Bank An Empirical Study on GitHub Copilot within Corporate Environment [0.0]
This study explores the integration of AI tools in software engineering practices within a large organization.
We focus on ANZ Bank, which employs over 5000 engineers covering all aspects of the software development life cycle.
This paper details an experiment conducted using GitHub Copilot, a notable AI tool, within a controlled environment to evaluate its effectiveness in real-world engineering tasks.
arXiv Detail & Related papers (2024-02-08T12:47:57Z) - Exploring the Problems, their Causes and Solutions of AI Pair Programming: A Study on GitHub and Stack Overflow [6.724815667295355]
GitHub Copilot, the AI programmer pair, utilize machine learning models trained on a large corpus of code snippets to generate code suggestions.
Despite its popularity in software development, there is limited empirical evidence on the actual experiences of practitioners who work with Copilot.
We collected data from 473 GitHub issues, 706 GitHub discussions, and 142 Stack Overflow posts.
arXiv Detail & Related papers (2023-11-02T06:24:38Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - Giving Feedback on Interactive Student Programs with Meta-Exploration [74.5597783609281]
Developing interactive software, such as websites or games, is a particularly engaging way to learn computer science.
Standard approaches require instructors to manually grade student-implemented interactive programs.
Online platforms that serve millions, like Code.org, are unable to provide any feedback on assignments for implementing interactive programs.
arXiv Detail & Related papers (2022-11-16T10:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.