Optimizing Latent Dimension Allocation in Hierarchical VAEs: Balancing Attenuation and Information Retention for OOD Detection
- URL: http://arxiv.org/abs/2506.10089v1
- Date: Wed, 11 Jun 2025 18:16:19 GMT
- Title: Optimizing Latent Dimension Allocation in Hierarchical VAEs: Balancing Attenuation and Information Retention for OOD Detection
- Authors: Dane Williamson, Yangfeng Ji, Matthew Dwyer,
- Abstract summary: hierarchical variational autoencoders (HVAEs) offer improved representational capacity over traditional VAEs.<n>Existing approaches often allocate latent capacity arbitrarily, leading to ineffective representations or posterior collapse.<n>We introduce a theoretically grounded framework for optimizing latent dimension allocation in HVAEs.<n>We prove the existence of an optimal allocation ratio $rast$ under a fixed latent budget, and empirically show that tuning this ratio consistently improves OOD detection performance.
- Score: 14.833454650943805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Out-of-distribution (OOD) detection is a critical task in machine learning, particularly for safety-critical applications where unexpected inputs must be reliably flagged. While hierarchical variational autoencoders (HVAEs) offer improved representational capacity over traditional VAEs, their performance is highly sensitive to how latent dimensions are distributed across layers. Existing approaches often allocate latent capacity arbitrarily, leading to ineffective representations or posterior collapse. In this work, we introduce a theoretically grounded framework for optimizing latent dimension allocation in HVAEs, drawing on principles from information theory to formalize the trade-off between information loss and representational attenuation. We prove the existence of an optimal allocation ratio $r^{\ast}$ under a fixed latent budget, and empirically show that tuning this ratio consistently improves OOD detection performance across datasets and architectures. Our approach outperforms baseline HVAE configurations and provides practical guidance for principled latent structure design, leading to more robust OOD detection with deep generative models.
Related papers
- Knowledge Regularized Negative Feature Tuning of Vision-Language Models for Out-of-Distribution Detection [54.433899174017185]
Out-of-distribution (OOD) detection is crucial for building reliable machine learning models.<n>We propose a novel method called Knowledge Regularized Negative Feature Tuning (KR-NFT)<n>NFT applies distribution-aware transformations to pre-trained text features, effectively separating positive and negative features into distinct spaces.<n>When trained with few-shot samples from ImageNet dataset, KR-NFT not only improves ID classification accuracy and OOD detection but also significantly reduces the FPR95 by 5.44%.
arXiv Detail & Related papers (2025-07-26T07:44:04Z) - Non-Linear Outlier Synthesis for Out-of-Distribution Detection [5.019613806273252]
We present NCIS, which enhances the quality of synthetic outliers by operating directly in the diffusion's model embedding space.
We demonstrate that these improvements yield new state-of-the-art OOD detection results on standard ImageNet100 and CIFAR100 benchmarks.
arXiv Detail & Related papers (2024-11-20T09:47:29Z) - Enhancing OOD Detection Using Latent Diffusion [5.093257685701887]
Out-of-Distribution (OOD) detection algorithms have been developed to identify unknown samples or objects in real-world deployments.<n>We propose an Outlier Aware Learning framework, which synthesizes OOD training data in the latent space.<n>We also develop a knowledge distillation module to prevent the degradation of ID classification accuracy when training with OOD data.
arXiv Detail & Related papers (2024-06-24T11:01:43Z) - CRoFT: Robust Fine-Tuning with Concurrent Optimization for OOD Generalization and Open-Set OOD Detection [42.33618249731874]
We show that minimizing the magnitude of energy scores on training data leads to domain-consistent Hessians of classification loss.
We have developed a unified fine-tuning framework that allows for concurrent optimization of both tasks.
arXiv Detail & Related papers (2024-05-26T03:28:59Z) - Towards Calibrated Robust Fine-Tuning of Vision-Language Models [97.19901765814431]
This work proposes a robust fine-tuning method that improves both OOD accuracy and confidence calibration simultaneously in vision language models.
We show that both OOD classification and OOD calibration errors have a shared upper bound consisting of two terms of ID data.
Based on this insight, we design a novel framework that conducts fine-tuning with a constrained multimodal contrastive loss enforcing a larger smallest singular value.
arXiv Detail & Related papers (2023-11-03T05:41:25Z) - Mind the Backbone: Minimizing Backbone Distortion for Robust Object
Detection [52.355018626115346]
Building object detectors that are robust to domain shifts is critical for real-world applications.
We propose to use Relative Gradient Norm as a way to measure the vulnerability of a backbone to feature distortion.
We present recipes to boost OOD robustness for both types of backbones.
arXiv Detail & Related papers (2023-03-26T14:50:43Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Free Lunch for Generating Effective Outlier Supervision [46.37464572099351]
We propose an ultra-effective method to generate near-realistic outlier supervision.
Our proposed textttBayesAug significantly reduces the false positive rate over 12.50% compared with the previous schemes.
arXiv Detail & Related papers (2023-01-17T01:46:45Z) - Exploring Optimal Substructure for Out-of-distribution Generalization
via Feature-targeted Model Pruning [23.938392334438582]
We propose a novel Spurious Feature-targeted model Pruning framework, dubbed SFP, to automatically explore invariant substructures.
SFP can significantly outperform both structure-based and non-structure OOD generalization SOTAs, with accuracy improvement up to 4.72% and 23.35%, respectively.
arXiv Detail & Related papers (2022-12-19T13:51:06Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - High-Dimensional Bayesian Optimisation with Variational Autoencoders and
Deep Metric Learning [119.91679702854499]
We introduce a method based on deep metric learning to perform Bayesian optimisation over high-dimensional, structured input spaces.
We achieve such an inductive bias using just 1% of the available labelled data.
As an empirical contribution, we present state-of-the-art results on real-world high-dimensional black-box optimisation problems.
arXiv Detail & Related papers (2021-06-07T13:35:47Z) - Out-Of-Distribution Detection With Subspace Techniques And Probabilistic
Modeling Of Features [7.219077740523682]
This paper presents a principled approach for detecting out-of-distribution (OOD) samples in deep neural networks (DNN)
Modeling probability distributions on deep features has recently emerged as an effective, yet computationally cheap method to detect OOD samples in DNN.
We apply linear statistical dimensionality reduction techniques and nonlinear manifold-learning techniques on the high-dimensional features in order to capture the true subspace spanned by the features.
arXiv Detail & Related papers (2020-12-08T07:07:11Z) - Target-Embedding Autoencoders for Supervised Representation Learning [111.07204912245841]
This paper analyzes a framework for improving generalization in a purely supervised setting, where the target space is high-dimensional.
We motivate and formalize the general framework of target-embedding autoencoders (TEA) for supervised prediction, learning intermediate latent representations jointly optimized to be both predictable from features as well as predictive of targets.
arXiv Detail & Related papers (2020-01-23T02:37:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.