Rethinking Brain Tumor Segmentation from the Frequency Domain Perspective
- URL: http://arxiv.org/abs/2506.10142v1
- Date: Wed, 11 Jun 2025 19:44:51 GMT
- Title: Rethinking Brain Tumor Segmentation from the Frequency Domain Perspective
- Authors: Minye Shao, Zeyu Wang, Haoran Duan, Yawen Huang, Bing Zhai, Shizheng Wang, Yang Long, Yefeng Zheng,
- Abstract summary: We propose the Harmonized Frequency Fusion Network (HFF-Net), which rethinks brain tumor segmentation from a frequency-domain perspective.<n>To comprehensively characterize tumor regions, we develop a Frequency Domain Decomposition (FDD) module that separates MRI images into low-frequency components.<n>To further enhance sensitivity to tumor boundaries, we introduce an Adaptive Laplacian Convolution (ALC) module that adaptively emphasizes critical high-frequency details.
- Score: 22.83598714271789
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise segmentation of brain tumors, particularly contrast-enhancing regions visible in post-contrast MRI (areas highlighted by contrast agent injection), is crucial for accurate clinical diagnosis and treatment planning but remains challenging. However, current methods exhibit notable performance degradation in segmenting these enhancing brain tumor areas, largely due to insufficient consideration of MRI-specific tumor features such as complex textures and directional variations. To address this, we propose the Harmonized Frequency Fusion Network (HFF-Net), which rethinks brain tumor segmentation from a frequency-domain perspective. To comprehensively characterize tumor regions, we develop a Frequency Domain Decomposition (FDD) module that separates MRI images into low-frequency components, capturing smooth tumor contours and high-frequency components, highlighting detailed textures and directional edges. To further enhance sensitivity to tumor boundaries, we introduce an Adaptive Laplacian Convolution (ALC) module that adaptively emphasizes critical high-frequency details using dynamically updated convolution kernels. To effectively fuse tumor features across multiple scales, we design a Frequency Domain Cross-Attention (FDCA) integrating semantic, positional, and slice-specific information. We further validate and interpret frequency-domain improvements through visualization, theoretical reasoning, and experimental analyses. Extensive experiments on four public datasets demonstrate that HFF-Net achieves an average relative improvement of 4.48\% (ranging from 2.39\% to 7.72\%) in the mean Dice scores across the three major subregions, and an average relative improvement of 7.33% (ranging from 5.96% to 8.64%) in the segmentation of contrast-enhancing tumor regions, while maintaining favorable computational efficiency and clinical applicability. Code: https://github.com/VinyehShaw/HFF.
Related papers
- Graph-based Multi-Modal Interaction Lightweight Network for Brain Tumor Segmentation (GMLN-BTS) in Edge Iterative MRI Lesion Localization System (EdgeIMLocSys) [6.451534509235736]
We propose the Edge Iterative MRI Lesion Localization System (EdgeIMLocSys), which integrates Continuous Learning from Human Feedback.<n>Central to this system is the Graph-based Multi-Modal Interaction Lightweight Network for Brain Tumor (GMLN-BTS)<n>Our proposed GMLN-BTS model achieves a Dice score of 85.1% on the BraTS 2017 dataset with only 4.58 million parameters, representing a 98% reduction compared to mainstream 3D Transformer models.
arXiv Detail & Related papers (2025-07-14T07:29:49Z) - MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
We propose MAST-Pro, a novel framework that integrates dynamic Mixture-of-Experts (D-MoE) and knowledge-driven prompts for pan-tumor segmentation.<n>Specifically, text and anatomical prompts provide domain-specific priors guiding tumor representation learning, while D-MoE dynamically selects experts to balance generic and tumor-specific feature learning.<n>Experiments on multi-anatomical tumor datasets demonstrate that MAST-Pro outperforms state-of-the-art approaches, achieving up to a 5.20% improvement in average improvement while reducing trainable parameters by 91.04%, without compromising accuracy.
arXiv Detail & Related papers (2025-03-18T15:39:44Z) - Transferring Ultrahigh-Field Representations for Intensity-Guided Brain
Segmentation of Low-Field Magnetic Resonance Imaging [51.92395928517429]
The use of 7T MRI is limited by its high cost and lower accessibility compared to low-field (LF) MRI.
This study proposes a deep-learning framework that fuses the input LF magnetic resonance feature representations with the inferred 7T-like feature representations for brain image segmentation tasks.
arXiv Detail & Related papers (2024-02-13T12:21:06Z) - Multilevel Perception Boundary-guided Network for Breast Lesion
Segmentation in Ultrasound Images [9.252383213566947]
We propose a PBNet composed by a multilevel global perception module (MGPM) and a boundary guided module (BGM) to segment breast tumors from ultrasound images.
In MGPM, the long-range spatial dependence between the voxels in a single level feature maps are modeled, and then the multilevel semantic information is fused.
In BGM, the tumor boundaries are extracted from the high-level semantic maps using the dilation and erosion effects of max pooling.
arXiv Detail & Related papers (2023-10-23T07:21:02Z) - Progressive Dual Priori Network for Generalized Breast Tumor Segmentation [5.003997324423131]
We propose a progressive dual priori network ( PDPNet) to segment breast tumors from DCE-MRI images.
The results show that the DSC and HD95 of PDPNet were improved at least by 5.13% and 7.58% respectively on multi-center test sets.
arXiv Detail & Related papers (2023-10-20T15:12:06Z) - Assessing the performance of deep learning-based models for prostate
cancer segmentation using uncertainty scores [1.0499611180329804]
The aim is to improve the workflow of prostate cancer detection and diagnosis.
The top-performing model is the Attention R2U-Net, achieving a mean Intersection over Union (IoU) of 76.3% and Dice Similarity Coefficient (DSC) of 85% for segmenting all zones.
arXiv Detail & Related papers (2023-08-09T01:38:58Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Large-Kernel Attention for 3D Medical Image Segmentation [14.76728117630242]
In this paper, a novel large- kernel (LK) attention module is proposed to achieve accurate multi-organ segmentation and tumor segmentation.
The advantages of convolution and self-attention are combined in the proposed LK attention module, including local contextual information, long-range dependence, and channel adaptation.
The module also decomposes the LK convolution to optimize the computational cost and can be easily incorporated into FCNs such as U-Net.
arXiv Detail & Related papers (2022-07-19T16:32:55Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Scale-Space Autoencoders for Unsupervised Anomaly Segmentation in Brain
MRI [47.26574993639482]
We show improved anomaly segmentation performance and the general capability to obtain much more crisp reconstructions of input data at native resolution.
The modeling of the laplacian pyramid further enables the delineation and aggregation of lesions at multiple scales.
arXiv Detail & Related papers (2020-06-23T09:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.