Do Language Models Have Bayesian Brains? Distinguishing Stochastic and Deterministic Decision Patterns within Large Language Models
- URL: http://arxiv.org/abs/2506.10268v1
- Date: Thu, 12 Jun 2025 01:23:22 GMT
- Title: Do Language Models Have Bayesian Brains? Distinguishing Stochastic and Deterministic Decision Patterns within Large Language Models
- Authors: Andrea Yaoyun Cui, Pengfei Yu,
- Abstract summary: We show that under certain conditions, language models can exhibit near-deterministic decision-making.<n>This challenges the sampling assumption and undermines previous methods for eliciting human-like priors.<n>We propose a straightforward approach to distinguish between deterministic decision patterns in Gibbs sampling, helping to prevent the inference of misleading language model priors.
- Score: 2.5812117322021644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language models are essentially probability distributions over token sequences. Auto-regressive models generate sentences by iteratively computing and sampling from the distribution of the next token. This iterative sampling introduces stochasticity, leading to the assumption that language models make probabilistic decisions, similar to sampling from unknown distributions. Building on this assumption, prior research has used simulated Gibbs sampling, inspired by experiments designed to elicit human priors, to infer the priors of language models. In this paper, we revisit a critical question: Do language models possess Bayesian brains? Our findings show that under certain conditions, language models can exhibit near-deterministic decision-making, such as producing maximum likelihood estimations, even with a non-zero sampling temperature. This challenges the sampling assumption and undermines previous methods for eliciting human-like priors. Furthermore, we demonstrate that without proper scrutiny, a system with deterministic behavior undergoing simulated Gibbs sampling can converge to a "false prior." To address this, we propose a straightforward approach to distinguish between stochastic and deterministic decision patterns in Gibbs sampling, helping to prevent the inference of misleading language model priors. We experiment on a variety of large language models to identify their decision patterns under various circumstances. Our results provide key insights in understanding decision making of large language models.
Related papers
- A Probability--Quality Trade-off in Aligned Language Models and its Relation to Sampling Adaptors [50.046717886067555]
We show that when sampling corpora from an aligned language model, there exists a trade-off between the strings' average reward and average log-likelihood.
We provide a formal treatment of this phenomenon and demonstrate how a choice of sampling adaptor allows for a selection of how much likelihood we exchange for the reward.
arXiv Detail & Related papers (2024-06-14T17:38:21Z) - Token-wise Decomposition of Autoregressive Language Model Hidden States
for Analyzing Model Predictions [9.909170013118775]
This work presents a linear decomposition of final hidden states from autoregressive language models based on each initial input token.
Using the change in next-word probability as a measure of importance, this work first examines which context words make the biggest contribution to language model predictions.
arXiv Detail & Related papers (2023-05-17T23:55:32Z) - Quark: Controllable Text Generation with Reinforced Unlearning [68.07749519374089]
Large-scale language models often learn behaviors that are misaligned with user expectations.
We introduce Quantized Reward Konditioning (Quark), an algorithm for optimizing a reward function that quantifies an (un)wanted property.
For unlearning toxicity, negative sentiment, and repetition, our experiments show that Quark outperforms both strong baselines and state-of-the-art reinforcement learning methods.
arXiv Detail & Related papers (2022-05-26T21:11:51Z) - Locally Typical Sampling [84.62530743899025]
We show that today's probabilistic language generators fall short when it comes to producing coherent and fluent text.<n>We propose a simple and efficient procedure for enforcing this criterion when generating from probabilistic models.
arXiv Detail & Related papers (2022-02-01T18:58:45Z) - Modeling the Unigram Distribution [39.153612297712655]
The unigram distribution is the non-contextual probability of finding a specific word form in a corpus.
We present a novel model for estimating it in a language.
arXiv Detail & Related papers (2021-06-04T07:02:49Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z) - Limits of Detecting Text Generated by Large-Scale Language Models [65.46403462928319]
Some consider large-scale language models that can generate long and coherent pieces of text as dangerous, since they may be used in misinformation campaigns.
Here we formulate large-scale language model output detection as a hypothesis testing problem to classify text as genuine or generated.
arXiv Detail & Related papers (2020-02-09T19:53:23Z) - Parameter Space Factorization for Zero-Shot Learning across Tasks and
Languages [112.65994041398481]
We propose a Bayesian generative model for the space of neural parameters.
We infer the posteriors over such latent variables based on data from seen task-language combinations.
Our model yields comparable or better results than state-of-the-art, zero-shot cross-lingual transfer methods.
arXiv Detail & Related papers (2020-01-30T16:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.