Flick: Few Labels Text Classification using K-Aware Intermediate Learning in Multi-Task Low-Resource Languages
- URL: http://arxiv.org/abs/2506.10292v1
- Date: Thu, 12 Jun 2025 02:09:47 GMT
- Title: Flick: Few Labels Text Classification using K-Aware Intermediate Learning in Multi-Task Low-Resource Languages
- Authors: Ali Almutairi, Abdullah Alsuhaibani, Shoaib Jameel, Usman Naseem, Gelareh Mohammadi, Imran Razzak,
- Abstract summary: We propose Flick to address the persistent challenge of few-label text classification in truly low-resource linguistic contexts.<n>Flick learns to distil highly reliable pseudo-labels from an initial broad set by focusing on single-cluster cohesion and leveraging an adaptive top-k selection mechanism.<n>We demonstrate Flick's efficacy across 14 diverse datasets, encompassing challenging low-resource languages such as Arabic, Urdu, and Setswana.
- Score: 15.409164660580362
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Training deep learning networks with minimal supervision has gained significant research attention due to its potential to reduce reliance on extensive labelled data. While self-training methods have proven effective in semi-supervised learning, they remain vulnerable to errors from noisy pseudo labels. Moreover, most recent approaches to the few-label classification problem are either designed for resource-rich languages such as English or involve complex cascading models that are prone to overfitting. To address the persistent challenge of few-label text classification in truly low-resource linguistic contexts, where existing methods often struggle with noisy pseudo-labels and domain adaptation, we propose Flick. Unlike prior methods that rely on generic multi-cluster pseudo-labelling or complex cascading architectures, Flick leverages the fundamental insight that distilling high-confidence pseudo-labels from a broader set of initial clusters can dramatically improve pseudo-label quality, particularly for linguistically diverse, low-resource settings. Flick introduces a novel pseudo-label refinement component, a departure from traditional pseudo-labelling strategies by identifying and leveraging top-performing pseudo-label clusters. This component specifically learns to distil highly reliable pseudo-labels from an initial broad set by focusing on single-cluster cohesion and leveraging an adaptive top-k selection mechanism. This targeted refinement process is crucial for mitigating the propagation of errors inherent in low-resource data, allowing for robust fine-tuning of pre-trained language models with only a handful of true labels. We demonstrate Flick's efficacy across 14 diverse datasets, encompassing challenging low-resource languages such as Arabic, Urdu, and Setswana, alongside English, showcasing its superior performance and adaptability.
Related papers
- MAGE: Multi-Head Attention Guided Embeddings for Low Resource Sentiment Classification [0.19381162067627603]
We introduce an advanced model combining Language-Independent Data Augmentation (LiDA) with Multi-Head Attention based weighted embeddings.<n>This approach not only addresses the data scarcity issue but also sets a foundation for future research in low-resource language processing and classification tasks.
arXiv Detail & Related papers (2025-02-25T08:53:27Z) - Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.<n>Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.<n>We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Maximizing Data Efficiency for Cross-Lingual TTS Adaptation by
Self-Supervised Representation Mixing and Embedding Initialization [57.38123229553157]
This paper presents an effective transfer learning framework for language adaptation in text-to-speech systems.
We focus on achieving language adaptation using minimal labeled and unlabeled data.
Experimental results show that our framework is able to synthesize intelligible speech in unseen languages with only 4 utterances of labeled data and 15 minutes of unlabeled data.
arXiv Detail & Related papers (2024-01-23T21:55:34Z) - IDoFew: Intermediate Training Using Dual-Clustering in Language Models
for Few Labels Text Classification [24.11420537250414]
Bidirectional Representations from Transformers (BERT) have been very effective in various Natural Language Processing (NLP) and text mining tasks including text classification.
Some tasks still pose challenges for these models, including text classification with limited labels.
We have developed a novel two-stage intermediate clustering with subsequent fine-tuning that models the pseudo-labels reliably.
arXiv Detail & Related papers (2024-01-08T17:07:37Z) - Improving Self-training for Cross-lingual Named Entity Recognition with
Contrastive and Prototype Learning [80.08139343603956]
In cross-lingual named entity recognition, self-training is commonly used to bridge the linguistic gap.
In this work, we aim to improve self-training for cross-lingual NER by combining representation learning and pseudo label refinement.
Our proposed method, namely ContProto mainly comprises two components: (1) contrastive self-training and (2) prototype-based pseudo-labeling.
arXiv Detail & Related papers (2023-05-23T02:52:16Z) - CLIP-VG: Self-paced Curriculum Adapting of CLIP for Visual Grounding [86.79903269137971]
Unsupervised visual grounding has been developed to locate regions using pseudo-labels.
We propose CLIP-VG, a novel method that can conduct self-paced curriculum adapting of CLIP with pseudo-language labels.
Our method outperforms the current state-of-the-art unsupervised method by a significant margin on RefCOCO/+/g datasets.
arXiv Detail & Related papers (2023-05-15T14:42:02Z) - Semi-Supervised Learning of Semantic Correspondence with Pseudo-Labels [26.542718087103665]
SemiMatch is a semi-supervised solution for establishing dense correspondences across semantically similar images.
Our framework generates the pseudo-labels using the model's prediction itself between source and weakly-augmented target, and uses pseudo-labels to learn the model again between source and strongly-augmented target.
In experiments, SemiMatch achieves state-of-the-art performance on various benchmarks, especially on PF-Willow by a large margin.
arXiv Detail & Related papers (2022-03-30T03:52:50Z) - Active Refinement for Multi-Label Learning: A Pseudo-Label Approach [84.52793080276048]
Multi-label learning (MLL) aims to associate a given instance with its relevant labels from a set of concepts.
Previous works of MLL mainly focused on the setting where the concept set is assumed to be fixed.
Many real-world applications require introducing new concepts into the set to meet new demands.
arXiv Detail & Related papers (2021-09-29T19:17:05Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z) - Leveraging Adversarial Training in Self-Learning for Cross-Lingual Text
Classification [52.69730591919885]
We present a semi-supervised adversarial training process that minimizes the maximal loss for label-preserving input perturbations.
We observe significant gains in effectiveness on document and intent classification for a diverse set of languages.
arXiv Detail & Related papers (2020-07-29T19:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.