FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks
- URL: http://arxiv.org/abs/2506.10399v1
- Date: Thu, 12 Jun 2025 06:46:07 GMT
- Title: FicGCN: Unveiling the Homomorphic Encryption Efficiency from Irregular Graph Convolutional Networks
- Authors: Zhaoxuan Kan, Husheng Han, Shangyi Shi, Tenghui Hua, Hang Lu, Xiaowei Li, Jianan Mu, Xing Hu,
- Abstract summary: Homomorphic Encryption (HE) facilitates Privacy-Preserving Machine Learning (PPML) by allowing computations to be performed on encrypted data.<n>We propose FicGCN, a HE-based framework specifically designed to harness the sparse characteristics of GCNs.<n>FicGCN achieves the best performance across all tested datasets, with up to a 4.10x improvement over the latest design.
- Score: 4.423253724905452
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Convolutional Neural Networks (GCNs) have gained widespread popularity in various fields like personal healthcare and financial systems, due to their remarkable performance. Despite the growing demand for cloud-based GCN services, privacy concerns over sensitive graph data remain significant. Homomorphic Encryption (HE) facilitates Privacy-Preserving Machine Learning (PPML) by allowing computations to be performed on encrypted data. However, HE introduces substantial computational overhead, particularly for GCN operations that require rotations and multiplications in matrix products. The sparsity of GCNs offers significant performance potential, but their irregularity introduces additional operations that reduce practical gains. In this paper, we propose FicGCN, a HE-based framework specifically designed to harness the sparse characteristics of GCNs and strike a globally optimal balance between aggregation and combination operations. FicGCN employs a latency-aware packing scheme, a Sparse Intra-Ciphertext Aggregation (SpIntra-CA) method to minimize rotation overhead, and a region-based data reordering driven by local adjacency structure. We evaluated FicGCN on several popular datasets, and the results show that FicGCN achieved the best performance across all tested datasets, with up to a 4.10x improvement over the latest design.
Related papers
- LinGCN: Structural Linearized Graph Convolutional Network for
Homomorphically Encrypted Inference [19.5669231249754]
We present LinGCN, a framework designed to reduce multiplication depth and optimize the performance of HE based GCN inference.
Remarkably, LinGCN achieves a 14.2x latency speedup relative to CryptoGCN, while preserving an inference accuracy of 75% and notably reducing multiplication depth.
arXiv Detail & Related papers (2023-09-25T17:56:54Z) - Beyond Graph Convolutional Network: An Interpretable
Regularizer-centered Optimization Framework [12.116373546916078]
Graph convolutional networks (GCNs) have been attracting widespread attentions due to their encouraging performance and powerful generalizations.
In this paper, we induce an interpretable regularizer-centerd optimization framework, in which by building appropriate regularizers we can interpret most GCNs.
Under the proposed framework, we devise a dual-regularizer graph convolutional network (dubbed tsGCN) to capture topological and semantic structures from graph data.
arXiv Detail & Related papers (2023-01-11T05:51:33Z) - CryptoGCN: Fast and Scalable Homomorphically Encrypted Graph
Convolutional Network Inference [12.03953896181613]
Cloud-based graph convolutional network (GCN) has demonstrated great success and potential in many privacy-sensitive applications.
Despite its high inference accuracy and performance on cloud, maintaining data privacy in GCN inference remains largely unexplored.
In this paper, we take an initial attempt towards this and develop $textitCryptoGCN$--a homomorphic encryption (HE) based GCN inference framework.
arXiv Detail & Related papers (2022-09-24T02:20:54Z) - GROW: A Row-Stationary Sparse-Dense GEMM Accelerator for
Memory-Efficient Graph Convolutional Neural Networks [4.669338722185048]
A unique property of Graph convolutional neural networks (GCNs) is that its two primary execution stages, aggregation and combination, exhibit drastically different dataflows.
We present GROW, a GCN accelerator based on Gustavson's algorithm to architect a row-wise product based sparse-dense GEMM accelerator.
arXiv Detail & Related papers (2022-03-01T00:26:31Z) - Multi-scale Graph Convolutional Networks with Self-Attention [2.66512000865131]
Graph convolutional networks (GCNs) have achieved remarkable learning ability for dealing with various graph structural data.
Over-smoothing phenomenon as a crucial issue of GCNs remains to be solved and investigated.
We propose two novel multi-scale GCN frameworks by incorporating self-attention mechanism and multi-scale information into the design of GCNs.
arXiv Detail & Related papers (2021-12-04T04:41:24Z) - Towards Efficient Graph Convolutional Networks for Point Cloud Handling [181.59146413326056]
We aim at improving the computational efficiency of graph convolutional networks (GCNs) for learning on point clouds.
A series of experiments show that optimized networks have reduced computational complexity, decreased memory consumption, and accelerated inference speed.
arXiv Detail & Related papers (2021-04-12T17:59:16Z) - Learning to Drop: Robust Graph Neural Network via Topological Denoising [50.81722989898142]
We propose PTDNet, a parameterized topological denoising network, to improve the robustness and generalization performance of Graph Neural Networks (GNNs)
PTDNet prunes task-irrelevant edges by penalizing the number of edges in the sparsified graph with parameterized networks.
We show that PTDNet can improve the performance of GNNs significantly and the performance gain becomes larger for more noisy datasets.
arXiv Detail & Related papers (2020-11-13T18:53:21Z) - AM-GCN: Adaptive Multi-channel Graph Convolutional Networks [85.0332394224503]
We study whether Graph Convolutional Networks (GCNs) can optimally integrate node features and topological structures in a complex graph with rich information.
We propose an adaptive multi-channel graph convolutional networks for semi-supervised classification (AM-GCN)
Our experiments show that AM-GCN extracts the most correlated information from both node features and topological structures substantially.
arXiv Detail & Related papers (2020-07-05T08:16:03Z) - DeeperGCN: All You Need to Train Deeper GCNs [66.64739331859226]
Graph Convolutional Networks (GCNs) have been drawing significant attention with the power of representation learning on graphs.
Unlike Convolutional Neural Networks (CNNs), which are able to take advantage of stacking very deep layers, GCNs suffer from vanishing gradient, over-smoothing and over-fitting issues when going deeper.
This paper proposes DeeperGCN that is capable of successfully and reliably training very deep GCNs.
arXiv Detail & Related papers (2020-06-13T23:00:22Z) - Cross-GCN: Enhancing Graph Convolutional Network with $k$-Order Feature
Interactions [153.6357310444093]
Graph Convolutional Network (GCN) is an emerging technique that performs learning and reasoning on graph data.
We argue that existing designs of GCN forgo modeling cross features, making GCN less effective for tasks or data where cross features are important.
We design a new operator named Cross-feature Graph Convolution, which explicitly models the arbitrary-order cross features with complexity linear to feature dimension and order size.
arXiv Detail & Related papers (2020-03-05T13:05:27Z) - LightGCN: Simplifying and Powering Graph Convolution Network for
Recommendation [100.76229017056181]
Graph Convolution Network (GCN) has become new state-of-the-art for collaborative filtering.
In this work, we aim to simplify the design of GCN to make it more concise and appropriate for recommendation.
We propose a new model named LightGCN, including only the most essential component in GCN -- neighborhood aggregation.
arXiv Detail & Related papers (2020-02-06T06:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.