HPCTransCompile: An AI Compiler Generated Dataset for High-Performance CUDA Transpilation and LLM Preliminary Exploration
- URL: http://arxiv.org/abs/2506.10401v2
- Date: Fri, 04 Jul 2025 02:01:57 GMT
- Title: HPCTransCompile: An AI Compiler Generated Dataset for High-Performance CUDA Transpilation and LLM Preliminary Exploration
- Authors: Jiaqi Lv, Xufeng He, Yanchen Liu, Xu Dai, Aocheng Shen, Yinghao Li, Jiachen Hao, Jianrong Ding, Yang Hu, Shouyi Yin,
- Abstract summary: Deep learning has driven exponential increases in model parameters and computational demands.<n> NVIDIA GPUs and their-based software ecosystem provide robust support for parallel computing.<n>The ecosystem has established a dominant position in the field of parallel software.<n> translating code to other platforms poses significant challenges due to differences parallel programming paradigms and hardware.
- Score: 13.53425131505526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid growth of deep learning has driven exponential increases in model parameters and computational demands. NVIDIA GPUs and their CUDA-based software ecosystem provide robust support for parallel computing, significantly alleviating computational bottlenecks. Meanwhile, due to the cultivation of user programming habits and the high performance of GPUs, the CUDA ecosystem has established a dominant position in the field of parallel software. This dominance requires other hardware platforms to support CUDA-based software with performance portability. However, translating CUDA code to other platforms poses significant challenges due to differences in parallel programming paradigms and hardware architectures. Existing approaches rely on language extensions, domain-specific languages (DSLs), or compilers but face limitations in workload coverage and generalizability. Moreover, these methods often incur substantial development costs. Recently, LLMs have demonstrated extraordinary potential in various vertical domains, especially in code-related tasks. However, the performance of existing LLMs in CUDA transpilation, particularly for high-performance code, remains suboptimal. To address these challenges, we propose a novel framework for generating high-performance CUDA and corresponding platform code pairs, leveraging AI compiler and automatic optimization technology. We further enhance the framework with a graph-based data augmentation method and introduce HPCTransEval, a benchmark for evaluating LLM performance on CUDA transpilation. We conduct experiments using CUDA-to-CPU transpilation as a case study on leading LLMs. The speedup ratio of the CPU operators has an average improvemnet of 43.8\%, highlighting the potential of LLMs to address compatibility challenges within the CUDA ecosystem. Our code is available at https://github.com/PJLAB-CHIP/HPCTransCompile.
Related papers
- CUDA-L1: Improving CUDA Optimization via Contrastive Reinforcement Learning [35.06696271451966]
We introduce an automated reinforcement learning framework for optimization that employs a novel contrastive algorithm, RL-L1.<n> RL-L1 achieves significant performance improvements on the optimization task: trained on NVIDIA A100, it delivers an average speedup of x3.12 with a median speedup of x1.42 across all 250 kernels of KernelBench, with peak speedups reaching x120.
arXiv Detail & Related papers (2025-07-18T17:43:56Z) - CUDA-LLM: LLMs Can Write Efficient CUDA Kernels [9.287036563375617]
Large Language Models (LLMs) have demonstrated strong capabilities in general-purpose code generation.<n>We propose a novel framework called textbfFeature SearchReinforcement (FSR) FSR jointly optimize compilation and functional correctness.
arXiv Detail & Related papers (2025-06-10T10:51:03Z) - Benchmarking Edge AI Platforms for High-Performance ML Inference [0.0]
Edge computing's growing prominence, due to its ability to reduce communication latency and enable real-time processing, is promoting the rise of high-performance, heterogeneous System-on-Chip solutions.
While current approaches often involve scaling down modern hardware, the performance characteristics of neural network workloads can vary significantly.
We compare the latency and throughput of various linear algebra and neural network inference tasks across CPU-only, CPU/GPU, and CPU/NPU integrated solutions.
arXiv Detail & Related papers (2024-09-23T08:27:27Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [19.167604927651073]
Auto-regressive decoding of Large Language Models (LLMs) results in significant overheads in their hardware performance.
We propose a novel parallel prompt decoding that requires only $0.0002$% trainable parameters, enabling efficient training on a single A100-40GB GPU in just 16 hours.
Our approach demonstrates up to 2.49$times$ speedup and maintains a minimal memory overhead of just $0.0004$%.
arXiv Detail & Related papers (2024-05-28T22:19:30Z) - Fast Chain-of-Thought: A Glance of Future from Parallel Decoding Leads to Answers Faster [61.83949316226113]
FastCoT is a model-agnostic framework based on parallel decoding.
We show that FastCoT saves inference time by nearly 20% with only a negligible performance drop compared to the regular approach.
arXiv Detail & Related papers (2023-11-14T15:56:18Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
We envision a decentralized system unlocking the potential vast untapped consumer-level GPU.
This system faces critical challenges, including limited CPU and GPU memory, low network bandwidth, the variability of peer and device heterogeneity.
arXiv Detail & Related papers (2023-09-03T13:27:56Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
This work introduces a framework to develop efficient, portable Deep Learning and High Performance Computing kernels.
We decompose the kernel development in two steps: 1) Expressing the computational core using Processing Primitives (TPPs) and 2) Expressing the logical loops around TPPs in a high-level, declarative fashion.
We demonstrate the efficacy of our approach using standalone kernels and end-to-end workloads that outperform state-of-the-art implementations on diverse CPU platforms.
arXiv Detail & Related papers (2023-04-25T05:04:44Z) - ParaGraph: Weighted Graph Representation for Performance Optimization of
HPC Kernels [1.304892050913381]
We introduce a new graph-based program representation for parallel applications that extends the Abstract Syntax Tree.
We evaluate our proposed representation by training a Graph Neural Network (GNN) to predict the runtime of an OpenMP code region.
Results show that our approach is indeed effective and has normalized RMSE as low as 0.004 to at most 0.01 in its runtime predictions.
arXiv Detail & Related papers (2023-04-07T05:52:59Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Extending C++ for Heterogeneous Quantum-Classical Computing [56.782064931823015]
qcor is a language extension to C++ and compiler implementation that enables heterogeneous quantum-classical programming, compilation, and execution in a single-source context.
Our work provides a first-of-its-kind C++ compiler enabling high-level quantum kernel (function) expression in a quantum-language manner.
arXiv Detail & Related papers (2020-10-08T12:49:07Z) - PolyDL: Polyhedral Optimizations for Creation of High Performance DL
primitives [55.79741270235602]
We present compiler algorithms to automatically generate high performance implementations of Deep Learning primitives.
We develop novel data reuse analysis algorithms using the polyhedral model.
We also show that such a hybrid compiler plus a minimal library-use approach results in state-of-the-art performance.
arXiv Detail & Related papers (2020-06-02T06:44:09Z) - Towards High Performance Java-based Deep Learning Frameworks [0.22940141855172028]
Modern cloud services have set the demand for fast and efficient data processing.
This demand is common among numerous application domains, such as deep learning, data mining, and computer vision.
In this paper we have employed TornadoVM, a state-of-the-art programming framework to transparently accelerate Deep Netts; a Java-based deep learning framework.
arXiv Detail & Related papers (2020-01-13T13:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.