Size-adaptive Hypothesis Testing for Fairness
- URL: http://arxiv.org/abs/2506.10586v1
- Date: Thu, 12 Jun 2025 11:22:09 GMT
- Title: Size-adaptive Hypothesis Testing for Fairness
- Authors: Antonio Ferrara, Francesco Cozzi, Alan Perotti, André Panisson, Francesco Bonchi,
- Abstract summary: We introduce a unified, size-adaptive, hypothesis-testing framework that turns fairness assessment into an evidence-based statistical decision.<n>We prove a Central-Limit result for the statistical parity difference, leading to analytic confidence intervals and a Wald test whose type-I (false positive) error is guaranteed at level $alpha$.<n>For the long tail of small intersectional groups, we derive a fully Bayesian Dirichlet-multinomial estimator.
- Score: 8.315080617799445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Determining whether an algorithmic decision-making system discriminates against a specific demographic typically involves comparing a single point estimate of a fairness metric against a predefined threshold. This practice is statistically brittle: it ignores sampling error and treats small demographic subgroups the same as large ones. The problem intensifies in intersectional analyses, where multiple sensitive attributes are considered jointly, giving rise to a larger number of smaller groups. As these groups become more granular, the data representing them becomes too sparse for reliable estimation, and fairness metrics yield excessively wide confidence intervals, precluding meaningful conclusions about potential unfair treatments. In this paper, we introduce a unified, size-adaptive, hypothesis-testing framework that turns fairness assessment into an evidence-based statistical decision. Our contribution is twofold. (i) For sufficiently large subgroups, we prove a Central-Limit result for the statistical parity difference, leading to analytic confidence intervals and a Wald test whose type-I (false positive) error is guaranteed at level $\alpha$. (ii) For the long tail of small intersectional groups, we derive a fully Bayesian Dirichlet-multinomial estimator; Monte-Carlo credible intervals are calibrated for any sample size and naturally converge to Wald intervals as more data becomes available. We validate our approach empirically on benchmark datasets, demonstrating how our tests provide interpretable, statistically rigorous decisions under varying degrees of data availability and intersectionality.
Related papers
- A structured regression approach for evaluating model performance across intersectional subgroups [53.91682617836498]
Disaggregated evaluation is a central task in AI fairness assessment, where the goal is to measure an AI system's performance across different subgroups.
We introduce a structured regression approach to disaggregated evaluation that we demonstrate can yield reliable system performance estimates even for very small subgroups.
arXiv Detail & Related papers (2024-01-26T14:21:45Z) - Correcting Underrepresentation and Intersectional Bias for Classification [49.1574468325115]
We consider the problem of learning from data corrupted by underrepresentation bias.
We show that with a small amount of unbiased data, we can efficiently estimate the group-wise drop-out rates.
We show that our algorithm permits efficient learning for model classes of finite VC dimension.
arXiv Detail & Related papers (2023-06-19T18:25:44Z) - Statistical Inference for Fairness Auditing [4.318555434063274]
We frame this task as "fairness auditing," in terms of multiple hypothesis testing.
We show how the bootstrap can be used to simultaneously bound performance disparities over a collection of groups.
Our methods can be used to flag subpopulations affected by model underperformance, and certify subpopulations for which the model performs adequately.
arXiv Detail & Related papers (2023-05-05T17:54:22Z) - Two-Stage Robust and Sparse Distributed Statistical Inference for
Large-Scale Data [18.34490939288318]
We address the problem of conducting statistical inference in settings involving large-scale data that may be high-dimensional and contaminated by outliers.
We propose a two-stage distributed and robust statistical inference procedures coping with high-dimensional models by promoting sparsity.
arXiv Detail & Related papers (2022-08-17T11:17:47Z) - Statistical and Computational Phase Transitions in Group Testing [73.55361918807883]
We study the group testing problem where the goal is to identify a set of k infected individuals carrying a rare disease.
We consider two different simple random procedures for assigning individuals tests.
arXiv Detail & Related papers (2022-06-15T16:38:50Z) - Holistic Approach to Measure Sample-level Adversarial Vulnerability and
its Utility in Building Trustworthy Systems [17.707594255626216]
Adversarial attack perturbs an image with an imperceptible noise, leading to incorrect model prediction.
We propose a holistic approach for quantifying adversarial vulnerability of a sample by combining different perspectives.
We demonstrate that by reliably estimating adversarial vulnerability at the sample level, it is possible to develop a trustworthy system.
arXiv Detail & Related papers (2022-05-05T12:36:17Z) - Testing Group Fairness via Optimal Transport Projections [12.972104025246091]
The proposed test is a flexible, interpretable, and statistically rigorous tool for auditing whether exhibited biases are to the perturbation or due to the randomness in the data.
The statistical challenges, which may arise from multiple impact criteria that define group fairness, are conveniently tackled by projecting the empirical measure onto the set of group-fair probability models.
The proposed framework can also be used to test for testing composite intrinsic fairness hypotheses and fairness with multiple sensitive attributes.
arXiv Detail & Related papers (2021-06-02T10:51:39Z) - DEMI: Discriminative Estimator of Mutual Information [5.248805627195347]
Estimating mutual information between continuous random variables is often intractable and challenging for high-dimensional data.
Recent progress has leveraged neural networks to optimize variational lower bounds on mutual information.
Our approach is based on training a classifier that provides the probability that a data sample pair is drawn from the joint distribution.
arXiv Detail & Related papers (2020-10-05T04:19:27Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Two-Sample Testing on Ranked Preference Data and the Role of Modeling
Assumptions [57.77347280992548]
In this paper, we design two-sample tests for pairwise comparison data and ranking data.
Our test requires essentially no assumptions on the distributions.
By applying our two-sample test on real-world pairwise comparison data, we conclude that ratings and rankings provided by people are indeed distributed differently.
arXiv Detail & Related papers (2020-06-21T20:51:09Z) - An Investigation of Why Overparameterization Exacerbates Spurious
Correlations [98.3066727301239]
We identify two key properties of the training data that drive this behavior.
We show how the inductive bias of models towards "memorizing" fewer examples can cause over parameterization to hurt.
arXiv Detail & Related papers (2020-05-09T01:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.