Constructing Extreme Heatwave Storylines with Differentiable Climate Models
- URL: http://arxiv.org/abs/2506.10660v2
- Date: Mon, 14 Jul 2025 14:39:47 GMT
- Title: Constructing Extreme Heatwave Storylines with Differentiable Climate Models
- Authors: Tim Whittaker, Alejandro Di Luca,
- Abstract summary: We present a novel framework that leverages a differentiable hybrid climate model, NeuralGCM, to optimize initial conditions and generate physically consistent worst-case heatwave trajectories.<n>Applying to the 2021 Pacific Northwest heatwave, our method produces heatwave intensity up to 3.7 $circ$C above the most extreme member of a 75-member ensemble.<n>Our results demonstrate that differentiable climate models can efficiently explore the upper tails of event likelihoods, providing a powerful new approach for constructing targeted storylines of extreme weather under climate change.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding the plausible upper bounds of extreme weather events is essential for risk assessment in a warming climate. Existing methods, based on large ensembles of physics-based models, are often computationally expensive or lack the fidelity needed to simulate rare, high-impact extremes. Here, we present a novel framework that leverages a differentiable hybrid climate model, NeuralGCM, to optimize initial conditions and generate physically consistent worst-case heatwave trajectories. Applied to the 2021 Pacific Northwest heatwave, our method produces heatwave intensity up to 3.7 $^\circ$C above the most extreme member of a 75-member ensemble. These trajectories feature intensified atmospheric blocking and amplified Rossby wave patterns-hallmarks of severe heat events. Our results demonstrate that differentiable climate models can efficiently explore the upper tails of event likelihoods, providing a powerful new approach for constructing targeted storylines of extreme weather under climate change.
Related papers
- Deep Learning Atmospheric Models Reliably Simulate Out-of-Sample Land Heat and Cold Wave Frequencies [0.0]
We evaluate two deep learning (DL)-based general circulation models (GCMs) against a conventional high-resolution land-atmosphere model (HiRAM)<n>Both DL models generalize successfully to unseen climate conditions, broadly reproducing the frequency and spatial patterns of heatwave and cold wave events during 1900-1960.<n>An exception is over portions of North Asia and North America, where all models perform poorly during 1940-1960.
arXiv Detail & Related papers (2025-07-03T21:09:27Z) - ClimateBench-M: A Multi-Modal Climate Data Benchmark with a Simple Generative Method [61.76389719956301]
We contribute a multi-modal climate benchmark, i.e., ClimateBench-M, which aligns time series climate data from ERA5, extreme weather events data from NOAA, and satellite image data from NASA.<n>Under each data modality, we also propose a simple but strong generative method that could produce competitive performance in weather forecasting, thunderstorm alerts, and crop segmentation tasks.
arXiv Detail & Related papers (2025-04-10T02:22:23Z) - PACER: Physics Informed Uncertainty Aware Climate Emulator [0.0]
PACER emulates temperature and precipitation stably for 86 years while only being trained on greenhouse gas emissions data.
We incorporate a fundamental physical law of advection-diffusion in PACER accounting for boundary conditions.
PACER has been trained on 15 climate models provided by ClimateSet outperforming baselines across most of the climate models.
arXiv Detail & Related papers (2024-10-29T01:53:40Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - CMIP X-MOS: Improving Climate Models with Extreme Model Output
Statistics [40.517778024431244]
We introduce Extreme Model Output Statistics (X-MOS) to improve predictions of natural disaster risks.
This approach utilizes deep regression techniques to precisely map CMIP model outputs to real measurements obtained from weather stations.
In contrast to previous research, our study places a strong emphasis on enhancing the estimation of the tails of future climate parameter distributions.
arXiv Detail & Related papers (2023-10-24T13:18:53Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Dynamical Tests of a Deep-Learning Weather Prediction Model [0.0]
Deep-learning weather prediction models have been shown to produce forecasts that rival those from physics-based models run at operational centers.
It is unclear whether these models have encoded atmospheric dynamics, or simply pattern matching that produces the smallest forecast error.
Here we subject one such model, Pangu-weather, to a set of four classical dynamical experiments that do not resemble the model training data.
We conclude that the model encodes realistic physics in all experiments, and suggest it can be used as a tool for rapidly testing ideas before using expensive physics-based models.
arXiv Detail & Related papers (2023-09-19T18:26:41Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Computationally-Efficient Climate Predictions using Multi-Fidelity
Surrogate Modelling [0.0]
We investigate the potential of multi-fidelity surrogate modelling as a way to produce high-fidelity climate predictions at low cost.
Our model combines the predictions of a low-fidelity Global Climate Model (GCM) and those of a high-fidelity Regional Climate Model (RCM)
We are able to produce high-fidelity temperature predictions at significantly lower computational cost compared to the high-fidelity model alone.
arXiv Detail & Related papers (2021-08-03T15:26:42Z) - Deep Learning based Extreme Heatwave Forecast [8.975667614727648]
Using 1000 years of state-of-the-art PlaSim Planete Simulator Climate Model data, it is shown that Convolutional Neural Network-based Deep Learning frameworks, with large-class undersampling and transfer learning achieve significant performance in forecasting the occurrence of extreme heatwaves.
arXiv Detail & Related papers (2021-03-17T16:10:06Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z) - Dynamical Landscape and Multistability of a Climate Model [64.467612647225]
We find a third intermediate stable state in one of the two climate models we consider.
The combination of our approaches allows to identify how the negative feedback of ocean heat transport and entropy production drastically change the topography of Earth's climate.
arXiv Detail & Related papers (2020-10-20T15:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.