Viability of Future Actions: Robust Safety in Reinforcement Learning via Entropy Regularization
- URL: http://arxiv.org/abs/2506.10871v1
- Date: Thu, 12 Jun 2025 16:34:19 GMT
- Title: Viability of Future Actions: Robust Safety in Reinforcement Learning via Entropy Regularization
- Authors: Pierre-François Massiani, Alexander von Rohr, Lukas Haverbeck, Sebastian Trimpe,
- Abstract summary: We analyze the interplay between two well-established techniques in model-free reinforcement learning: entropy regularization and constraints penalization.<n>We show that entropy regularization in constrained RL inherently biases learning toward maximizing the number of future viable actions, thereby promoting constraints satisfaction robust to action noise.<n>We conclude that the connection between entropy regularization and robustness is a promising avenue for further empirical and theoretical investigation.
- Score: 47.30677525394649
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the many recent advances in reinforcement learning (RL), the question of learning policies that robustly satisfy state constraints under unknown disturbances remains open. In this paper, we offer a new perspective on achieving robust safety by analyzing the interplay between two well-established techniques in model-free RL: entropy regularization, and constraints penalization. We reveal empirically that entropy regularization in constrained RL inherently biases learning toward maximizing the number of future viable actions, thereby promoting constraints satisfaction robust to action noise. Furthermore, we show that by relaxing strict safety constraints through penalties, the constrained RL problem can be approximated arbitrarily closely by an unconstrained one and thus solved using standard model-free RL. This reformulation preserves both safety and optimality while empirically improving resilience to disturbances. Our results indicate that the connection between entropy regularization and robustness is a promising avenue for further empirical and theoretical investigation, as it enables robust safety in RL through simple reward shaping.
Related papers
- Tilted Quantile Gradient Updates for Quantile-Constrained Reinforcement Learning [12.721239079824622]
We propose a safe reinforcement learning (RL) paradigm that enables a higher level of safety without any expectation-form approximations.<n>A tilted update strategy for quantile gradients is implemented to compensate the asymmetric distributional density.<n>Experiments demonstrate that the proposed model fully meets safety requirements (quantile constraints) while outperforming the state-of-the-art benchmarks with higher return.
arXiv Detail & Related papers (2024-12-17T18:58:00Z) - Latent Safety-Constrained Policy Approach for Safe Offline Reinforcement Learning [7.888219789657414]
In safe offline reinforcement learning (RL), the objective is to develop a policy that maximizes cumulative rewards while strictly adhering to safety constraints.<n>We address these issues with a novel approach that begins by learning a conservatively safe policy through the use of Conditional Variational Autoencoders.<n>We frame this as a Constrained Reward-Return Maximization problem, wherein the policy aims to optimize rewards while complying with the inferred latent safety constraints.
arXiv Detail & Related papers (2024-12-11T22:00:07Z) - Sampling-based Safe Reinforcement Learning for Nonlinear Dynamical
Systems [15.863561935347692]
We develop provably safe and convergent reinforcement learning algorithms for control of nonlinear dynamical systems.
Recent advances at the intersection of control and RL follow a two-stage, safety filter approach to enforcing hard safety constraints.
We develop a single-stage, sampling-based approach to hard constraint satisfaction that learns RL controllers enjoying classical convergence guarantees.
arXiv Detail & Related papers (2024-03-06T19:39:20Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
This paper addresses the problem of maintaining safety during training in Reinforcement Learning (RL)
We propose a new architecture that handles the trade-off between efficient progress and safety during exploration.
arXiv Detail & Related papers (2023-12-18T16:09:43Z) - State-Wise Safe Reinforcement Learning With Pixel Observations [12.338614299403305]
We propose a novel pixel-observation safe RL algorithm that efficiently encodes state-wise safety constraints with unknown hazard regions.
As a joint learning framework, our approach begins by constructing a latent dynamics model with low-dimensional latent spaces derived from pixel observations.
We then build and learn a latent barrier-like function on top of the latent dynamics and conduct policy optimization simultaneously, thereby improving both safety and the total expected return.
arXiv Detail & Related papers (2023-11-03T20:32:30Z) - A Multiplicative Value Function for Safe and Efficient Reinforcement
Learning [131.96501469927733]
We propose a safe model-free RL algorithm with a novel multiplicative value function consisting of a safety critic and a reward critic.
The safety critic predicts the probability of constraint violation and discounts the reward critic that only estimates constraint-free returns.
We evaluate our method in four safety-focused environments, including classical RL benchmarks augmented with safety constraints and robot navigation tasks with images and raw Lidar scans as observations.
arXiv Detail & Related papers (2023-03-07T18:29:15Z) - Safe Model-Based Reinforcement Learning with an Uncertainty-Aware
Reachability Certificate [6.581362609037603]
We build a safe reinforcement learning framework to resolve constraints required by the DRC and its corresponding shield policy.
We also devise a line search method to maintain safety and reach higher returns simultaneously while leveraging the shield policy.
arXiv Detail & Related papers (2022-10-14T06:16:53Z) - Safe Reinforcement Learning via Confidence-Based Filters [78.39359694273575]
We develop a control-theoretic approach for certifying state safety constraints for nominal policies learned via standard reinforcement learning techniques.
We provide formal safety guarantees, and empirically demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2022-07-04T11:43:23Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.