Slimming Down LLMs Without Losing Their Minds
- URL: http://arxiv.org/abs/2506.10885v1
- Date: Thu, 12 Jun 2025 16:49:40 GMT
- Title: Slimming Down LLMs Without Losing Their Minds
- Authors: Qingda, Mai,
- Abstract summary: This paper investigates and validates the impact of fine-tuning on large language model performance, focusing on parameter-efficient methods (LoRA and QLoRA)<n>We evaluate model capabilities across three key domains: (1) commonsense reasoning (HellaSwag), (2) mathematical reasoning (GSM8K), and (3) multi-domain knowledge (MMLU-CS)
- Score: 3.15067317204403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates and validates the impact of fine-tuning on large language model performance, focusing on parameter-efficient methods (LoRA and QLoRA). We evaluate model capabilities across three key domains: (1) commonsense reasoning (HellaSwag), (2) mathematical reasoning (GSM8K), and (3) multi-domain knowledge (MMLU-CS). Our findings demonstrate that: (1) LoRA-based methods effectively improve task-specific performance while maintaining computational efficiency, and (2) performance strongly depends on alignment between fine-tuning dataset and benchmark tasks. The study provides both theoretical insights into parameter-efficient mechanisms and practical guidance for developers implementing efficient LLM adaptation with limited resources.
Related papers
- EfficientLLM: Efficiency in Large Language Models [64.3537131208038]
Large Language Models (LLMs) have driven significant progress, yet their growing counts and context windows incur prohibitive compute, energy, and monetary costs.<n>We introduce EfficientLLM, a novel benchmark and the first comprehensive empirical study evaluating efficiency techniques for LLMs at scale.
arXiv Detail & Related papers (2025-05-20T02:27:08Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
Large Language Models (LLMs) have demonstrated remarkable capabilities in complex tasks.<n>Recent advancements in OpenAI o1 and DeepSeek-R1 have further improved performance in System-2 reasoning domains.
arXiv Detail & Related papers (2025-03-20T17:59:38Z) - Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving [55.895917967408586]
Existing approaches to mathematical reasoning with large language models rely on Chain-of-Thought (CoT) for generalizability or Tool-Integrated Reasoning (TIR) for precise computation.<n>We propose TATA (Teaching LLMs According to Their Aptitude), an adaptive framework that enables LLMs to personalize their reasoning strategy spontaneously.
arXiv Detail & Related papers (2025-02-17T16:56:23Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.<n>This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - What Makes In-context Learning Effective for Mathematical Reasoning: A Theoretical Analysis [81.15503859645149]
In this paper, we aim to theoretically analyze the impact of in-context demonstrations on large language models' reasoning performance.<n>We propose a straightforward, generalizable, and low-complexity demonstration selection method named LMS3.
arXiv Detail & Related papers (2024-12-11T11:38:11Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions.
But studies reveal that they often struggle with tasks requiring reasoning, such as math or physics limitation.
This raises questions about whether LLMs truly comprehend embedded knowledge or merely learn to replicate the token distribution without a true understanding of the content.
We propose Decon Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities.
arXiv Detail & Related papers (2024-09-04T13:17:09Z) - Analyzing Large Language Models for Classroom Discussion Assessment [0.8194411391152481]
We examine how the assessment performance of 2 large language models (LLMs) interacts with 3 factors that may affect performance: task formulation, context length, and few-shot examples.
Our results suggest that the 3 aforementioned factors do affect the performance of the tested LLMs and there is a relation between consistency and performance.
We recommend a LLM-based assessment approach that has a good balance in terms of predictive performance, computational efficiency, and consistency.
arXiv Detail & Related papers (2024-06-12T22:43:38Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStar is a purely inference-based searching method for large language models.
It formulates reasoning tasks as searching problems and proposes two search ideas to identify the optimal reasoning paths.
It significantly enhances the reasoning abilities of open-source models, such as Llama-2-13B and Mistral-7B, and achieves comparable performance to GPT-3.5 and Grok-1.
arXiv Detail & Related papers (2024-05-25T15:07:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.