SceneCompleter: Dense 3D Scene Completion for Generative Novel View Synthesis
- URL: http://arxiv.org/abs/2506.10981v1
- Date: Thu, 12 Jun 2025 17:59:56 GMT
- Title: SceneCompleter: Dense 3D Scene Completion for Generative Novel View Synthesis
- Authors: Weiliang Chen, Jiayi Bi, Yuanhui Huang, Wenzhao Zheng, Yueqi Duan,
- Abstract summary: SceneCompleter is a novel framework that achieves 3D-consistent generative novel view synthesis through dense 3D scene completion.<n>By effectively fusing structural and textural information, our method demonstrates superior coherence and plausibility in generative novel view synthesis across diverse datasets.
- Score: 21.44625641186402
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative models have gained significant attention in novel view synthesis (NVS) by alleviating the reliance on dense multi-view captures. However, existing methods typically fall into a conventional paradigm, where generative models first complete missing areas in 2D, followed by 3D recovery techniques to reconstruct the scene, which often results in overly smooth surfaces and distorted geometry, as generative models struggle to infer 3D structure solely from RGB data. In this paper, we propose SceneCompleter, a novel framework that achieves 3D-consistent generative novel view synthesis through dense 3D scene completion. SceneCompleter achieves both visual coherence and 3D-consistent generative scene completion through two key components: (1) a geometry-appearance dual-stream diffusion model that jointly synthesizes novel views in RGBD space; (2) a scene embedder that encodes a more holistic scene understanding from the reference image. By effectively fusing structural and textural information, our method demonstrates superior coherence and plausibility in generative novel view synthesis across diverse datasets. Project Page: https://chen-wl20.github.io/SceneCompleter
Related papers
- Video Perception Models for 3D Scene Synthesis [109.5543506037003]
VIPScene is a novel framework that exploits the encoded commonsense knowledge of the 3D physical world in video generation models.<n>VIPScene seamlessly integrates video generation, feedforward 3D reconstruction, and open-vocabulary perception models to semantically and geometrically analyze each object in a scene.
arXiv Detail & Related papers (2025-06-25T16:40:17Z) - Invisible Stitch: Generating Smooth 3D Scenes with Depth Inpainting [75.7154104065613]
We introduce a novel depth completion model, trained via teacher distillation and self-training to learn the 3D fusion process.
We also introduce a new benchmarking scheme for scene generation methods that is based on ground truth geometry.
arXiv Detail & Related papers (2024-04-30T17:59:40Z) - Planner3D: LLM-enhanced graph prior meets 3D indoor scene explicit regularization [31.52569918586902]
3D scene synthesis has diverse applications across a spectrum of industries such as robotics, films, and video games.
In this paper, we aim at generating realistic and reasonable 3D indoor scenes from scene graph.
Our method achieves better 3D scene synthesis, especially in terms of scene-level fidelity.
arXiv Detail & Related papers (2024-03-19T15:54:48Z) - 3D-SceneDreamer: Text-Driven 3D-Consistent Scene Generation [51.64796781728106]
We propose a generative refinement network to synthesize new contents with higher quality by exploiting the natural image prior to 2D diffusion model and the global 3D information of the current scene.
Our approach supports wide variety of scene generation and arbitrary camera trajectories with improved visual quality and 3D consistency.
arXiv Detail & Related papers (2024-03-14T14:31:22Z) - Denoising Diffusion via Image-Based Rendering [54.20828696348574]
We introduce the first diffusion model able to perform fast, detailed reconstruction and generation of real-world 3D scenes.
First, we introduce a new neural scene representation, IB-planes, that can efficiently and accurately represent large 3D scenes.
Second, we propose a denoising-diffusion framework to learn a prior over this novel 3D scene representation, using only 2D images.
arXiv Detail & Related papers (2024-02-05T19:00:45Z) - SceneWiz3D: Towards Text-guided 3D Scene Composition [134.71933134180782]
Existing approaches either leverage large text-to-image models to optimize a 3D representation or train 3D generators on object-centric datasets.
We introduce SceneWiz3D, a novel approach to synthesize high-fidelity 3D scenes from text.
arXiv Detail & Related papers (2023-12-13T18:59:30Z) - Consistent-1-to-3: Consistent Image to 3D View Synthesis via Geometry-aware Diffusion Models [16.326276673056334]
Consistent-1-to-3 is a generative framework that significantly mitigates this issue.
We decompose the NVS task into two stages: (i) transforming observed regions to a novel view, and (ii) hallucinating unseen regions.
We propose to employ epipolor-guided attention to incorporate geometry constraints, and multi-view attention to better aggregate multi-view information.
arXiv Detail & Related papers (2023-10-04T17:58:57Z) - CompNVS: Novel View Synthesis with Scene Completion [83.19663671794596]
We propose a generative pipeline performing on a sparse grid-based neural scene representation to complete unobserved scene parts.
We process encoded image features in 3D space with a geometry completion network and a subsequent texture inpainting network to extrapolate the missing area.
Photorealistic image sequences can be finally obtained via consistency-relevant differentiable rendering.
arXiv Detail & Related papers (2022-07-23T09:03:13Z) - Continuous Object Representation Networks: Novel View Synthesis without
Target View Supervision [26.885846254261626]
Continuous Object Representation Networks (CORN) is a conditional architecture that encodes an input image's geometry and appearance that map to a 3D consistent scene representation.
CORN achieves well on challenging tasks such as novel view synthesis and single-view 3D reconstruction and performance comparable to state-of-the-art approaches that use direct supervision.
arXiv Detail & Related papers (2020-07-30T17:49:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.