You Only Train Once: A Flexible Training Framework for Code Vulnerability Detection Driven by Vul-Vector
- URL: http://arxiv.org/abs/2506.10988v1
- Date: Wed, 12 Mar 2025 08:22:03 GMT
- Title: You Only Train Once: A Flexible Training Framework for Code Vulnerability Detection Driven by Vul-Vector
- Authors: Bowen Tian, Zhengyang Xu, Mingqiang Wu, Songning Lai, Yutai Yue,
- Abstract summary: underlinetextbfYOTO--underlinetextbfYou underlinetextbfOnly underlinetextbfTrain underlinetextbfOnce framework.<n>This paper introduces the underlinetextbfYOTO--underlinetextbfYou underlinetextbfOnly underlinetextbfTrain underlinetextbfOnce framework.
- Score: 3.5535006743623323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the pervasive integration of computer applications across industries, the presence of vulnerabilities within code bases poses significant risks. The diversity of software ecosystems coupled with the intricate nature of modern software engineering has led to a shift from manual code vulnerability identification towards the adoption of automated tools. Among these, deep learning-based approaches have risen to prominence due to their superior accuracy; however, these methodologies encounter several obstacles. Primarily, they necessitate extensive labeled datasets and prolonged training periods, and given the rapid emergence of new vulnerabilities, the frequent retraining of models becomes a resource-intensive endeavor, thereby limiting their applicability in cutting-edge scenarios. To mitigate these challenges, this paper introduces the \underline{\textbf{YOTO}}--\underline{\textbf{Y}}ou \underline{\textbf{O}}nly \underline{\textbf{T}}rain \underline{\textbf{O}}nce framework. This innovative approach facilitates the integration of multiple types of vulnerability detection models via parameter fusion, eliminating the need for joint training. Consequently, YOTO enables swift adaptation to newly discovered vulnerabilities, significantly reducing both the time and computational resources required for model updates.
Related papers
- Secure Tug-of-War (SecTOW): Iterative Defense-Attack Training with Reinforcement Learning for Multimodal Model Security [63.41350337821108]
We propose Secure Tug-of-War (SecTOW) to enhance the security of multimodal large language models (MLLMs)<n>SecTOW consists of two modules: a defender and an auxiliary attacker, both trained iteratively using reinforcement learning (GRPO)<n>We show that SecTOW significantly improves security while preserving general performance.
arXiv Detail & Related papers (2025-07-29T17:39:48Z) - Exploiting Edge Features for Transferable Adversarial Attacks in Distributed Machine Learning [54.26807397329468]
This work explores a previously overlooked vulnerability in distributed deep learning systems.<n>An adversary who intercepts the intermediate features transmitted between them can still pose a serious threat.<n>We propose an exploitation strategy specifically designed for distributed settings.
arXiv Detail & Related papers (2025-07-09T20:09:00Z) - Advancing Vulnerability Classification with BERT: A Multi-Objective Learning Model [0.0]
This paper presents a novel Vulnerability Report that leverages the BERT (Bi Representations from Transformers) model to perform multi-label classification.<n>The system is deployed via a REST API and a Streamlit UI, enabling real-time vulnerability analysis.
arXiv Detail & Related papers (2025-03-26T06:04:45Z) - Enhancing Software Vulnerability Detection Using Code Property Graphs and Convolutional Neural Networks [0.0]
This paper proposes a novel approach to detecting software vulnerabilities using a combination of code property graphs and machine learning techniques.<n>We introduce various neural network models, including convolutional neural networks adapted for graph data, to process these representations.<n>Our contributions include a methodology for transforming software code into code property graphs, the implementation of a convolutional neural network model for graph data, and the creation of a comprehensive dataset for training and evaluation.
arXiv Detail & Related papers (2025-03-23T19:12:07Z) - DFEPT: Data Flow Embedding for Enhancing Pre-Trained Model Based Vulnerability Detection [7.802093464108404]
We propose a data flow embedding technique to enhance the performance of pre-trained models in vulnerability detection tasks.
Specifically, we parse data flow graphs from function-level source code, and use the data type of the variable as the node characteristics of the DFG.
Our research shows that DFEPT can provide effective vulnerability semantic information to pre-trained models, achieving an accuracy of 64.97% on the Devign dataset and an F1-Score of 47.9% on the Reveal dataset.
arXiv Detail & Related papers (2024-10-24T07:05:07Z) - Enhancing Pre-Trained Language Models for Vulnerability Detection via Semantic-Preserving Data Augmentation [4.374800396968465]
We propose a data augmentation technique aimed at enhancing the performance of pre-trained language models for vulnerability detection.
By incorporating our augmented dataset in fine-tuning a series of representative code pre-trained models, up to 10.1% increase in accuracy and 23.6% increase in F1 can be achieved.
arXiv Detail & Related papers (2024-09-30T21:44:05Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - An Unbiased Transformer Source Code Learning with Semantic Vulnerability
Graph [3.3598755777055374]
Current vulnerability screening techniques are ineffective at identifying novel vulnerabilities or providing developers with code vulnerability and classification.
To address these issues, we propose a joint multitasked unbiased vulnerability classifier comprising a transformer "RoBERTa" and graph convolution neural network (GCN)
We present a training process utilizing a semantic vulnerability graph (SVG) representation from source code, created by integrating edges from a sequential flow, control flow, and data flow, as well as a novel flow dubbed Poacher Flow (PF)
arXiv Detail & Related papers (2023-04-17T20:54:14Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
Large language models (LLMs) for automatic code generation have achieved breakthroughs in several programming tasks.
Training data for these models is usually collected from the Internet (e.g., from open-source repositories) and is likely to contain faults and security vulnerabilities.
This unsanitized training data can cause the language models to learn these vulnerabilities and propagate them during the code generation procedure.
arXiv Detail & Related papers (2023-02-08T11:54:07Z) - Recursive Least-Squares Estimator-Aided Online Learning for Visual
Tracking [58.14267480293575]
We propose a simple yet effective online learning approach for few-shot online adaptation without requiring offline training.
It allows an in-built memory retention mechanism for the model to remember the knowledge about the object seen before.
We evaluate our approach based on two networks in the online learning families for tracking, i.e., multi-layer perceptrons in RT-MDNet and convolutional neural networks in DiMP.
arXiv Detail & Related papers (2021-12-28T06:51:18Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.