Customizing Speech Recognition Model with Large Language Model Feedback
- URL: http://arxiv.org/abs/2506.11091v1
- Date: Thu, 05 Jun 2025 18:42:57 GMT
- Title: Customizing Speech Recognition Model with Large Language Model Feedback
- Authors: Shaoshi Ling, Guoli Ye,
- Abstract summary: We propose a reinforcement learning based approach for unsupervised domain adaptation.<n>We leverage unlabeled data to enhance transcription quality, particularly the named entities affected by domain mismatch.<n>Our method achieves a 21% improvement on entity word error rate over conventional self-training methods.
- Score: 5.290365603660415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic speech recognition (ASR) systems have achieved strong performance on general transcription tasks. However, they continue to struggle with recognizing rare named entities and adapting to domain mismatches. In contrast, large language models (LLMs), trained on massive internet-scale datasets, are often more effective across a wide range of domains. In this work, we propose a reinforcement learning based approach for unsupervised domain adaptation, leveraging unlabeled data to enhance transcription quality, particularly the named entities affected by domain mismatch, through feedback from a LLM. Given contextual information, our framework employs a LLM as the reward model to score the hypotheses from the ASR model. These scores serve as reward signals to fine-tune the ASR model via reinforcement learning. Our method achieves a 21\% improvement on entity word error rate over conventional self-training methods.
Related papers
- Failing Forward: Improving Generative Error Correction for ASR with Synthetic Data and Retrieval Augmentation [73.9145653659403]
We show that Generative Error Correction models struggle to generalize beyond the specific types of errors encountered during training.
We propose DARAG, a novel approach designed to improve GEC for ASR in in-domain (ID) and OOD scenarios.
Our approach is simple, scalable, and both domain- and language-agnostic.
arXiv Detail & Related papers (2024-10-17T04:00:29Z) - CLLMFS: A Contrastive Learning enhanced Large Language Model Framework for Few-Shot Named Entity Recognition [3.695767900907561]
CLLMFS is a Contrastive Learning enhanced Large Language Model framework for Few-Shot Named Entity Recognition.
It integrates Low-Rank Adaptation (LoRA) and contrastive learning mechanisms specifically tailored for few-shot NER.
Our method has achieved state-of-the-art performance improvements on F1-score ranging from 2.58% to 97.74% over existing best-performing methods.
arXiv Detail & Related papers (2024-08-23T04:44:05Z) - Self-Taught Recognizer: Toward Unsupervised Adaptation for Speech Foundation Models [84.8919069953397]
Self-TAught Recognizer (STAR) is an unsupervised adaptation framework for speech recognition systems.
We show that STAR achieves an average of 13.5% relative reduction in word error rate across 14 target domains.
STAR exhibits high data efficiency that only requires less than one-hour unlabeled data.
arXiv Detail & Related papers (2024-05-23T04:27:11Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
We propose a novel approach for enhancing contextual recognition within ASR systems via semantic lattice processing.
Our solution consists of using Hidden Markov Models and Gaussian Mixture Models (HMM-GMM) along with Deep Neural Networks (DNN) models for better accuracy.
We demonstrate the effectiveness of our proposed framework on the LibriSpeech dataset with empirical analyses.
arXiv Detail & Related papers (2023-10-14T23:16:05Z) - Replay to Remember: Continual Layer-Specific Fine-tuning for German
Speech Recognition [19.635428830237842]
We study how well the performance of large-scale ASR models can be approximated for smaller domains.
We apply Experience Replay for continual learning to increase the robustness of the ASR model to vocabulary and speakers outside of the fine-tuned domain.
arXiv Detail & Related papers (2023-07-14T11:20:22Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) aims at searching for the target instances that are semantically relevant to the given query from the other modality.
Existing approaches typically suffer from two major limitations.
arXiv Detail & Related papers (2023-01-17T12:42:58Z) - A Likelihood Ratio based Domain Adaptation Method for E2E Models [10.510472957585646]
End-to-end (E2E) automatic speech recognition models like Recurrent Neural Networks Transducer (RNN-T) are becoming a popular choice for streaming ASR applications like voice assistants.
While E2E models are very effective at learning representation of the training data they are trained on, their accuracy on unseen domains remains a challenging problem.
In this work, we explore a contextual biasing approach using likelihood-ratio that leverages text data sources to adapt RNN-T model to new domains and entities.
arXiv Detail & Related papers (2022-01-10T21:22:39Z) - Distributionally Robust Recurrent Decoders with Random Network
Distillation [93.10261573696788]
We propose a method based on OOD detection with Random Network Distillation to allow an autoregressive language model to disregard OOD context during inference.
We apply our method to a GRU architecture, demonstrating improvements on multiple language modeling (LM) datasets.
arXiv Detail & Related papers (2021-10-25T19:26:29Z) - Enhancing the Generalization for Intent Classification and Out-of-Domain
Detection in SLU [70.44344060176952]
Intent classification is a major task in spoken language understanding (SLU)
Recent works have shown that using extra data and labels can improve the OOD detection performance.
This paper proposes to train a model with only IND data while supporting both IND intent classification and OOD detection.
arXiv Detail & Related papers (2021-06-28T08:27:38Z) - Feature Adaptation of Pre-Trained Language Models across Languages and
Domains with Robust Self-Training [47.12438995938133]
We adapt pre-trained language models (PrLMs) to new domains without fine-tuning.
We present class-aware feature self-distillation (CFd) to learn discriminative features from PrLMs.
Experiments on two monolingual and multilingual Amazon review datasets show that CFd can consistently improve the performance of self-training.
arXiv Detail & Related papers (2020-09-24T08:04:37Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
We propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with language understanding (LU)
We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
arXiv Detail & Related papers (2020-01-28T22:09:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.