Evolutionary Perspectives on the Evaluation of LLM-Based AI Agents: A Comprehensive Survey
- URL: http://arxiv.org/abs/2506.11102v1
- Date: Fri, 06 Jun 2025 17:52:18 GMT
- Title: Evolutionary Perspectives on the Evaluation of LLM-Based AI Agents: A Comprehensive Survey
- Authors: Jiachen Zhu, Menghui Zhu, Renting Rui, Rong Shan, Congmin Zheng, Bo Chen, Yunjia Xi, Jianghao Lin, Weiwen Liu, Ruiming Tang, Yong Yu, Weinan Zhang,
- Abstract summary: The transition from traditional large language models (LLMs) to more advanced AI agents represents a pivotal evolutionary step.<n>Existing evaluation frameworks often blur the distinctions between LLM chatbots and AI agents, leading to confusion among researchers selecting appropriate benchmarks.<n>This paper introduces a systematic analysis of current evaluation approaches, grounded in an evolutionary perspective.
- Score: 45.485318955120924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of large language models (LLMs), such as GPT, Gemini, and DeepSeek, has significantly advanced natural language processing, giving rise to sophisticated chatbots capable of diverse language-related tasks. The transition from these traditional LLM chatbots to more advanced AI agents represents a pivotal evolutionary step. However, existing evaluation frameworks often blur the distinctions between LLM chatbots and AI agents, leading to confusion among researchers selecting appropriate benchmarks. To bridge this gap, this paper introduces a systematic analysis of current evaluation approaches, grounded in an evolutionary perspective. We provide a detailed analytical framework that clearly differentiates AI agents from LLM chatbots along five key aspects: complex environment, multi-source instructor, dynamic feedback, multi-modal perception, and advanced capability. Further, we categorize existing evaluation benchmarks based on external environments driving forces, and resulting advanced internal capabilities. For each category, we delineate relevant evaluation attributes, presented comprehensively in practical reference tables. Finally, we synthesize current trends and outline future evaluation methodologies through four critical lenses: environment, agent, evaluator, and metrics. Our findings offer actionable guidance for researchers, facilitating the informed selection and application of benchmarks in AI agent evaluation, thus fostering continued advancement in this rapidly evolving research domain.
Related papers
- When AIs Judge AIs: The Rise of Agent-as-a-Judge Evaluation for LLMs [8.575522204707958]
Large language models (LLMs) grow in capability and autonomy, evaluating their outputs-especially in open-ended and complex tasks-has become a critical bottleneck.<n>A new paradigm is emerging: using AI agents as the evaluators themselves.<n>In this review, we define the agent-as-a-judge concept, trace its evolution from single-model judges to dynamic multi-agent debate frameworks, and critically examine their strengths and shortcomings.
arXiv Detail & Related papers (2025-08-05T01:42:25Z) - IDA-Bench: Evaluating LLMs on Interactive Guided Data Analysis [60.32962597618861]
IDA-Bench is a novel benchmark evaluating large language models in multi-round interactive scenarios.<n>Agent performance is judged by comparing its final numerical output to the human-derived baseline.<n>Even state-of-the-art coding agents (like Claude-3.7-thinking) succeed on 50% of the tasks, highlighting limitations not evident in single-turn tests.
arXiv Detail & Related papers (2025-05-23T09:37:52Z) - LLM-based Automated Grading with Human-in-the-Loop [32.14015215819979]
Large language models (LLMs) are increasingly being used for automatic short answer grading (ASAG)<n>In this work, we explore the potential of LLMs in ASAG tasks by leveraging their interactive capabilities through a human-in-the-loop (HITL) approach.<n>Our proposed framework, GradeHITL, utilizes the generative properties of LLMs to pose questions to human experts, incorporating their insights to refine grading rubrics dynamically.
arXiv Detail & Related papers (2025-04-07T16:23:07Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.<n>In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.<n>This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - TestAgent: A Framework for Domain-Adaptive Evaluation of LLMs via Dynamic Benchmark Construction and Exploratory Interaction [29.72874725703848]
Large language models (LLMs) are increasingly deployed to various vertical domains.<n>Current evaluation methods rely on static and resource-intensive datasets that are not aligned with real-world requirements.<n>We introduce two key concepts: textbfBenchmark+, which extends the traditional question-answer benchmark into a more flexible strategy-criterion'' format.<n>We propose textbftextscTestAgent, an agent-based evaluation framework that implements these concepts using retrieval-augmented generation and reinforcement learning.
arXiv Detail & Related papers (2024-10-15T11:20:42Z) - A Survey on Multimodal Benchmarks: In the Era of Large AI Models [13.299775710527962]
Multimodal Large Language Models (MLLMs) have brought substantial advancements in artificial intelligence.
This survey systematically reviews 211 benchmarks that assess MLLMs across four core domains: understanding, reasoning, generation, and application.
arXiv Detail & Related papers (2024-09-21T15:22:26Z) - Characteristic AI Agents via Large Language Models [40.10858767752735]
This research focuses on investigating the performance of Large Language Models in constructing characteristic AI agents.
A dataset called Character100'' is built for this benchmark, comprising the most-visited people on Wikipedia for language models to role-play.
The experimental results underscore the potential directions for further improvement in the capabilities of LLMs in constructing characteristic AI agents.
arXiv Detail & Related papers (2024-03-19T02:25:29Z) - Large Multimodal Agents: A Survey [78.81459893884737]
Large language models (LLMs) have achieved superior performance in powering text-based AI agents.
There is an emerging research trend focused on extending these LLM-powered AI agents into the multimodal domain.
This review aims to provide valuable insights and guidelines for future research in this rapidly evolving field.
arXiv Detail & Related papers (2024-02-23T06:04:23Z) - Inadequacies of Large Language Model Benchmarks in the Era of Generative Artificial Intelligence [5.147767778946168]
We critically assess 23 state-of-the-art Large Language Models (LLMs) benchmarks.
Our research uncovered significant limitations, including biases, difficulties in measuring genuine reasoning, adaptability, implementation inconsistencies, prompt engineering complexity, diversity, and the overlooking of cultural and ideological norms.
arXiv Detail & Related papers (2024-02-15T11:08:10Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [74.16170899755281]
We introduce AgentBoard, a pioneering comprehensive benchmark and accompanied open-source evaluation framework tailored to analytical evaluation of LLM agents.<n>AgentBoard offers a fine-grained progress rate metric that captures incremental advancements as well as a comprehensive evaluation toolkit.<n>This not only sheds light on the capabilities and limitations of LLM agents but also propels the interpretability of their performance to the forefront.
arXiv Detail & Related papers (2024-01-24T01:51:00Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
We build a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models.
Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
arXiv Detail & Related papers (2023-08-14T15:13:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.