Infinity Instruct: Scaling Instruction Selection and Synthesis to Enhance Language Models
- URL: http://arxiv.org/abs/2506.11116v1
- Date: Mon, 09 Jun 2025 06:37:15 GMT
- Title: Infinity Instruct: Scaling Instruction Selection and Synthesis to Enhance Language Models
- Authors: Jijie Li, Li Du, Hanyu Zhao, Bo-wen Zhang, Liangdong Wang, Boyan Gao, Guang Liu, Yonghua Lin,
- Abstract summary: Infinity-Instruct is a high-quality instruction dataset designed to enhance both foundational and chat capabilities of Large Language Models.<n>We empirically evaluate Infinity-Instruct by fine-tuning several open-source models, including Mistral, LLaMA, Qwen, and Yi, and observe substantial performance gains across both foundational and instruction following benchmarks.
- Score: 14.927052028174744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) demonstrate strong performance in real-world applications, yet existing open-source instruction datasets often concentrate on narrow domains, such as mathematics or coding, limiting generalization and widening the gap with proprietary models. To bridge this gap, we introduce Infinity-Instruct, a high-quality instruction dataset designed to enhance both foundational and chat capabilities of LLMs through a two-phase pipeline. In Phase 1, we curate 7.4M high-quality foundational instructions (InfInstruct-F-7.4M) from over 100M samples using hybrid data selection techniques. In Phase 2, we synthesize 1.5M high-quality chat instructions (InfInstruct-G-1.5M) through a two-stage process involving instruction selection, evolution, and diagnostic filtering. We empirically evaluate Infinity-Instruct by fine-tuning several open-source models, including Mistral, LLaMA, Qwen, and Yi, and observe substantial performance gains across both foundational and instruction following benchmarks, consistently surpassing official instruction-tuned counterparts. Notably, InfInstruct-LLaMA3.1-70B outperforms GPT-4-0314 by 8.6\% on instruction following tasks while achieving comparable foundational performance. These results underscore the synergy between foundational and chat training and offer new insights into holistic LLM development. Our dataset\footnote{https://huggingface.co/datasets/BAAI/Infinity-Instruct} and codes\footnote{https://gitee.com/li-touch/infinity-instruct} have been publicly released.
Related papers
- CoT-Self-Instruct: Building high-quality synthetic prompts for reasoning and non-reasoning tasks [57.482238100217195]
We propose CoT-Self-Instruct, a synthetic data generation method that instructs LLMs to first reason and plan via Chain-of-Thought (CoT)<n>In verifiable reasoning, our synthetic data significantly outperforms existing training datasets, such as s1k and OpenMathReasoning.<n>For non-verifiable instruction-following tasks, our method surpasses the performance of human or standard self-instruct prompts on both AlpacaEval 2.0 and Arena-Hard.
arXiv Detail & Related papers (2025-07-31T17:38:50Z) - OpenCodeInstruct: A Large-scale Instruction Tuning Dataset for Code LLMs [62.68905180014956]
We introduce OpenCodeInstruct, the largest open-access instruction tuning dataset, comprising 5 million diverse samples.<n>Each sample includes a programming question, solution, test cases, execution feedback, and LLM-generated quality assessments.<n>We fine-tune various base models, including LLaMA and Qwen, across multiple scales (1B+, 3B+, and 7B+) using our dataset.
arXiv Detail & Related papers (2025-04-05T02:52:16Z) - Comparative Analysis of Large Language Models for Context-Aware Code Completion using SAFIM Framework [5.312946761836463]
Large Language Models (LLMs) have revolutionized code completion, transforming it into a more intelligent and context-aware feature.<n>This study evaluates the performance of several chat-based LLMs, including Gemini 1.5 Flash, Gemini 1.5 Pro, GPT-4o, GPT-4o-mini, and GPT-4 Turbo.
arXiv Detail & Related papers (2025-02-21T06:32:31Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.<n>Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.<n>We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - Align$^2$LLaVA: Cascaded Human and Large Language Model Preference Alignment for Multi-modal Instruction Curation [56.75665429851673]
This paper introduces a novel instruction curation algorithm, derived from two unique perspectives, human and LLM preference alignment.<n>Experiments demonstrate that we can maintain or even improve model performance by compressing synthetic multimodal instructions by up to 90%.
arXiv Detail & Related papers (2024-09-27T08:20:59Z) - MMInstruct: A High-Quality Multi-Modal Instruction Tuning Dataset with Extensive Diversity [80.02202386597138]
We construct a high-quality, diverse visual instruction tuning dataset MMInstruct, which consists of 973K instructions from 24 domains.
Our instruction generation engine enables semi-automatic, low-cost, and multi-domain instruction generation at the cost of manual construction.
arXiv Detail & Related papers (2024-07-22T17:55:22Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - MAmmoTH2: Scaling Instructions from the Web [39.786198452175505]
We propose a paradigm to efficiently harvest 10 million naturally existing instruction data from the pre-training web corpus.
We build MAmmoTH2 models, which significantly boost performance on reasoning benchmarks.
Further training MAmmoTH2 on public instruction tuning datasets yields MAmmoTH2-Plus, achieving state-of-the-art performance.
arXiv Detail & Related papers (2024-05-06T15:11:38Z) - Instruction Mining: Instruction Data Selection for Tuning Large Language Models [18.378654454336136]
InstructMining is designed for automatically selecting premium instruction-following data for finetuning large language models.
We show that InstructMining achieves state-of-the-art performance on two of the most popular benchmarks: LLM-as-a-judge and Huggingface OpenLLM leaderboard.
arXiv Detail & Related papers (2023-07-12T16:37:31Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.
Instead of directly adjusting LLMs, our method employs a small tunable policy model to generate an auxiliary directional stimulus prompt for each input instance.
arXiv Detail & Related papers (2023-02-22T17:44:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.