Iterative Multilingual Spectral Attribute Erasure
- URL: http://arxiv.org/abs/2506.11244v1
- Date: Thu, 12 Jun 2025 19:30:30 GMT
- Title: Iterative Multilingual Spectral Attribute Erasure
- Authors: Shun Shao, Yftah Ziser, Zheng Zhao, Yifu Qiu, Shay B. Cohen, Anna Korhonen,
- Abstract summary: Iterative Multilingual Spectral Attribute Erasure (IMSAE)<n>We present Iterative Multilingual Spectral Attribute Erasure (IMSAE), which identifies and mitigates joint bias subspaces across multiple languages.
- Score: 36.73678940946656
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual representations embed words with similar meanings to share a common semantic space across languages, creating opportunities to transfer debiasing effects between languages. However, existing methods for debiasing are unable to exploit this opportunity because they operate on individual languages. We present Iterative Multilingual Spectral Attribute Erasure (IMSAE), which identifies and mitigates joint bias subspaces across multiple languages through iterative SVD-based truncation. Evaluating IMSAE across eight languages and five demographic dimensions, we demonstrate its effectiveness in both standard and zero-shot settings, where target language data is unavailable, but linguistically similar languages can be used for debiasing. Our comprehensive experiments across diverse language models (BERT, LLaMA, Mistral) show that IMSAE outperforms traditional monolingual and cross-lingual approaches while maintaining model utility.
Related papers
- Sparse Autoencoders Can Capture Language-Specific Concepts Across Diverse Languages [11.19692440351977]
Existing studies often focus on individual neurons, but their polysemantic nature makes it difficult to isolate language-specific units.<n>We introduce SAE-LAPE, a method based on feature activation probability, to identify language-specific features within the feed-forward network.<n>These features influence the model's multilingual performance and language output and can be used for language identification with performance comparable to fastText.
arXiv Detail & Related papers (2025-07-15T12:00:30Z) - High-Dimensional Interlingual Representations of Large Language Models [65.77317753001954]
Large language models (LLMs) trained on massive multilingual datasets hint at the formation of interlingual constructs.<n>We explore 31 diverse languages varying on their resource-levels, typologies, and geographical regions.<n>We find that multilingual LLMs exhibit inconsistent cross-lingual alignments.
arXiv Detail & Related papers (2025-03-14T10:39:27Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.<n>But can these models relate corresponding concepts across languages, i.e., be crosslingual?<n>This study evaluates state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Selected Languages are All You Need for Cross-lingual Truthfulness Transfer [38.3269908062146]
We propose a practical method for cross-lingual truthfulness transfer called Fact-aware Multilingual Selective Synergy (FaMSS)<n>FaMSS is able to select an optimal subset of all tested languages by language bias and transfer contributions, and then employ translation instruction tuning for cross-lingual truthfulness transfer.
arXiv Detail & Related papers (2024-06-20T15:59:07Z) - Mitigating Language-Level Performance Disparity in mPLMs via Teacher Language Selection and Cross-lingual Self-Distillation [25.850573463743352]
Large-scale multilingual Pretrained Language Models (mPLMs) yield impressive performance on cross-language tasks.
Yet significant performance disparities exist across different languages within the same mPLM.
We introduce ALSACE to leverage the learned knowledge from the well-performing languages to guide under-performing ones within the same mPLM.
arXiv Detail & Related papers (2024-04-12T14:19:16Z) - Discovering Low-rank Subspaces for Language-agnostic Multilingual
Representations [38.56175462620892]
Large pretrained multilingual language models (ML-LMs) have shown remarkable capabilities of zero-shot cross-lingual transfer.
We present a novel view of projecting away language-specific factors from a multilingual embedding space.
We show that applying our method consistently leads to improvements over commonly used ML-LMs.
arXiv Detail & Related papers (2024-01-11T09:54:11Z) - Extrapolating Large Language Models to Non-English by Aligning Languages [109.09051737966178]
Existing large language models show disparate capability across different languages.
In this paper, we empower pre-trained LLMs on non-English languages by building semantic alignment across languages.
arXiv Detail & Related papers (2023-08-09T13:32:06Z) - Multilingual Entity and Relation Extraction from Unified to
Language-specific Training [29.778332361215636]
Existing approaches for entity and relation extraction tasks mainly focus on the English corpora and ignore other languages.
We propose a two-stage multilingual training method and a joint model called Multilingual Entity and Relation Extraction framework (mERE) to mitigate language interference.
Our method outperforms both the monolingual and multilingual baseline methods.
arXiv Detail & Related papers (2023-01-11T12:26:53Z) - FILTER: An Enhanced Fusion Method for Cross-lingual Language
Understanding [85.29270319872597]
We propose an enhanced fusion method that takes cross-lingual data as input for XLM finetuning.
During inference, the model makes predictions based on the text input in the target language and its translation in the source language.
To tackle this issue, we propose an additional KL-divergence self-teaching loss for model training, based on auto-generated soft pseudo-labels for translated text in the target language.
arXiv Detail & Related papers (2020-09-10T22:42:15Z) - Inducing Language-Agnostic Multilingual Representations [61.97381112847459]
Cross-lingual representations have the potential to make NLP techniques available to the vast majority of languages in the world.
We examine three approaches for this: (i) re-aligning the vector spaces of target languages to a pivot source language; (ii) removing language-specific means and variances, which yields better discriminativeness of embeddings as a by-product; and (iii) increasing input similarity across languages by removing morphological contractions and sentence reordering.
arXiv Detail & Related papers (2020-08-20T17:58:56Z) - Gender Bias in Multilingual Embeddings and Cross-Lingual Transfer [101.58431011820755]
We study gender bias in multilingual embeddings and how it affects transfer learning for NLP applications.
We create a multilingual dataset for bias analysis and propose several ways for quantifying bias in multilingual representations.
arXiv Detail & Related papers (2020-05-02T04:34:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.