Do We Still Need Audio? Rethinking Speaker Diarization with a Text-Based Approach Using Multiple Prediction Models
- URL: http://arxiv.org/abs/2506.11344v1
- Date: Thu, 12 Jun 2025 22:31:02 GMT
- Title: Do We Still Need Audio? Rethinking Speaker Diarization with a Text-Based Approach Using Multiple Prediction Models
- Authors: Peilin Wu, Jinho D. Choi,
- Abstract summary: We present a novel approach to Speaker Diarization (SD) by leveraging text-based methods focused on Sentence-level Speaker Change Detection within dialogues.<n>Two models are developed: the Single Prediction Model (SPM) and the Multiple Prediction Model (MPM), both of which demonstrate significant improvements in identifying speaker changes.
- Score: 10.582167003047058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel approach to Speaker Diarization (SD) by leveraging text-based methods focused on Sentence-level Speaker Change Detection within dialogues. Unlike audio-based SD systems, which are often challenged by audio quality and speaker similarity, our approach utilizes the dialogue transcript alone. Two models are developed: the Single Prediction Model (SPM) and the Multiple Prediction Model (MPM), both of which demonstrate significant improvements in identifying speaker changes, particularly in short conversations. Our findings, based on a curated dataset encompassing diverse conversational scenarios, reveal that the text-based SD approach, especially the MPM, performs competitively against state-of-the-art audio-based SD systems, with superior performance in short conversational contexts. This paper not only showcases the potential of leveraging linguistic features for SD but also highlights the importance of integrating semantic understanding into SD systems, opening avenues for future research in multimodal and semantic feature-based diarization.
Related papers
- MSA-ASR: Efficient Multilingual Speaker Attribution with frozen ASR Models [59.80042864360884]
Speaker-attributed automatic speech recognition (SA-ASR) aims to transcribe speech while assigning transcripts to the corresponding speakers accurately.<n>This paper introduces a novel approach, leveraging a frozen multilingual ASR model to incorporate speaker attribution into the transcriptions.
arXiv Detail & Related papers (2024-11-27T09:01:08Z) - WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain.
These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech.
Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems.
arXiv Detail & Related papers (2024-11-15T04:16:45Z) - SPECTRUM: Speaker-Enhanced Pre-Training for Long Dialogue Summarization [48.284512017469524]
Multi-turn dialogues are characterized by their extended length and the presence of turn-taking conversations.
Traditional language models often overlook the distinct features of these dialogues by treating them as regular text.
We propose a speaker-enhanced pre-training method for long dialogue summarization.
arXiv Detail & Related papers (2024-01-31T04:50:00Z) - Exploring Speaker-Related Information in Spoken Language Understanding
for Better Speaker Diarization [7.673971221635779]
We propose methods to extract speaker-related information from semantic content in multi-party meetings.
Experiments on both AISHELL-4 and AliMeeting datasets show that our method achieves consistent improvements over acoustic-only speaker diarization systems.
arXiv Detail & Related papers (2023-05-22T11:14:19Z) - Channel-aware Decoupling Network for Multi-turn Dialogue Comprehension [81.47133615169203]
We propose compositional learning for holistic interaction across utterances beyond the sequential contextualization from PrLMs.
We employ domain-adaptive training strategies to help the model adapt to the dialogue domains.
Experimental results show that our method substantially boosts the strong PrLM baselines in four public benchmark datasets.
arXiv Detail & Related papers (2023-01-10T13:18:25Z) - Speaker Turn Modeling for Dialogue Act Classification [9.124489616470001]
We propose to integrate the turn changes in conversations among speakers when modeling Dialogue Act (DA) classification.
We learn conversation-invariant speaker turn embeddings to represent the speaker turns in a conversation.
Our model is able to capture the semantics from the dialogue content while accounting for different speaker turns in a conversation.
arXiv Detail & Related papers (2021-09-10T18:36:35Z) - Self- and Pseudo-self-supervised Prediction of Speaker and Key-utterance
for Multi-party Dialogue Reading Comprehension [46.69961067676279]
Multi-party dialogue machine reading comprehension (MRC) brings tremendous challenge since it involves multiple speakers at one dialogue.
Previous models focus on how to incorporate speaker information flows using complex graph-based modules.
In this paper, we design two labour-free self- and pseudo-self-supervised prediction tasks on speaker and key-utterance to implicitly model the speaker information flows.
arXiv Detail & Related papers (2021-09-08T16:51:41Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
A multi-turn dialogue is composed of multiple utterances from two or more different speaker roles.
In the existing retrieval-based multi-turn dialogue modeling, the pre-trained language models (PrLMs) as encoder represent the dialogues coarsely.
We propose a novel model to fill such a gap by modeling the effective utterance-aware and speaker-aware representations entailed in a dialogue history.
arXiv Detail & Related papers (2020-09-14T15:07:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.