VulStamp: Vulnerability Assessment using Large Language Model
- URL: http://arxiv.org/abs/2506.11484v1
- Date: Fri, 13 Jun 2025 06:14:56 GMT
- Title: VulStamp: Vulnerability Assessment using Large Language Model
- Authors: Haoshen, Ming Hu, Xiaofei Xie, Jiaye Li, Mingsong Chen,
- Abstract summary: VulStamp is a novel intention-guided framework to facilitate description-free vulnerability assessment.<n>Based on the intention information, VulStamp uses a prompt-tuned model for vulnerability assessment.
- Score: 28.25412570467278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although modern vulnerability detection tools enable developers to efficiently identify numerous security flaws, indiscriminate remediation efforts often lead to superfluous development expenses. This is particularly true given that a substantial portion of detected vulnerabilities either possess low exploitability or would incur negligible impact in practical operational environments. Consequently, vulnerability severity assessment has emerged as a critical component in optimizing software development efficiency. Existing vulnerability assessment methods typically rely on manually crafted descriptions associated with source code artifacts. However, due to variability in description quality and subjectivity in intention interpretation, the performance of these methods is seriously limited. To address this issue, this paper introduces VulStamp, a novel intention-guided framework, to facilitate description-free vulnerability assessment. Specifically, VulStamp adopts static analysis together with Large Language Model (LLM) to extract the intention information of vulnerable code. Based on the intention information, VulStamp uses a prompt-tuned model for vulnerability assessment. Furthermore, to mitigate the problem of imbalanced data associated with vulnerability types, VulStamp integrates a Reinforcement Learning (RL)-based prompt-tuning method to train the assessment model.
Related papers
- Boosting Vulnerability Detection of LLMs via Curriculum Preference Optimization with Synthetic Reasoning Data [22.557961978833386]
We propose a novel framework for large language models (LLMs) that excels at mining vulnerability patterns.<n>Specifically, we construct forward and backward reasoning processes for vulnerability and corresponding fixed code, ensuring the synthesis of high-quality reasoning data.<n>We show that ReVD sets new state-of-the-art for LLM-based software vulnerability detection, e.g., 12.24%-22.77% improvement in the accuracy.
arXiv Detail & Related papers (2025-06-09T03:25:23Z) - Advancing Neural Network Verification through Hierarchical Safety Abstract Interpretation [52.626086874715284]
We introduce a novel problem formulation called Abstract DNN-Verification, which verifies a hierarchical structure of unsafe outputs.<n>By leveraging abstract interpretation and reasoning about output reachable sets, our approach enables assessing multiple safety levels during the formal verification process.<n>Our contributions include a theoretical exploration of the relationship between our novel abstract safety formulation and existing approaches.
arXiv Detail & Related papers (2025-05-08T13:29:46Z) - DFEPT: Data Flow Embedding for Enhancing Pre-Trained Model Based Vulnerability Detection [7.802093464108404]
We propose a data flow embedding technique to enhance the performance of pre-trained models in vulnerability detection tasks.
Specifically, we parse data flow graphs from function-level source code, and use the data type of the variable as the node characteristics of the DFG.
Our research shows that DFEPT can provide effective vulnerability semantic information to pre-trained models, achieving an accuracy of 64.97% on the Devign dataset and an F1-Score of 47.9% on the Reveal dataset.
arXiv Detail & Related papers (2024-10-24T07:05:07Z) - RealVul: Can We Detect Vulnerabilities in Web Applications with LLM? [4.467475584754677]
We present RealVul, the first LLM-based framework designed for PHP vulnerability detection.
We can isolate potential vulnerability triggers while streamlining the code and eliminating unnecessary semantic information.
We also address the issue of insufficient PHP vulnerability samples by improving data synthesis methods.
arXiv Detail & Related papers (2024-10-10T03:16:34Z) - Line-level Semantic Structure Learning for Code Vulnerability Detection [44.29771620061153]
We introduce the Code Structure-Aware Network through Line-level Semantic Learning.
It comprises four components: code preprocessing, global semantic awareness, line semantic awareness, and line semantic structure awareness.
The CSLS model outperforms the state-of-the-art baselines in code vulnerability detection, achieving 70.57% accuracy on the Devign dataset and a 49.59% F1 score on the Reveal dataset.
arXiv Detail & Related papers (2024-07-26T17:15:58Z) - Enhancing Code Vulnerability Detection via Vulnerability-Preserving Data Augmentation [29.72520866016839]
Source code vulnerability detection aims to identify inherent vulnerabilities to safeguard software systems from potential attacks.
Many prior studies overlook diverse vulnerability characteristics, simplifying the problem into a binary (0-1) classification task.
FGVulDet employs multiple classifiers to discern characteristics of various vulnerability types and combines their outputs to identify the specific type of vulnerability.
FGVulDet is trained on a large-scale dataset from GitHub, encompassing five different types of vulnerabilities.
arXiv Detail & Related papers (2024-04-15T09:10:52Z) - Vulnerability Detection with Code Language Models: How Far Are We? [40.455600722638906]
PrimeVul is a new dataset for training and evaluating code LMs for vulnerability detection.
It incorporates a novel set of data labeling techniques that achieve comparable label accuracy to human-verified benchmarks.
It also implements a rigorous data de-duplication and chronological data splitting strategy to mitigate data leakage issues.
arXiv Detail & Related papers (2024-03-27T14:34:29Z) - Profile of Vulnerability Remediations in Dependencies Using Graph
Analysis [40.35284812745255]
This research introduces graph analysis methods and a modified Graph Attention Convolutional Neural Network (GAT) model.
We analyze control flow graphs to profile breaking changes in applications occurring from dependency upgrades intended to remediate vulnerabilities.
Results demonstrate the effectiveness of the enhanced GAT model in offering nuanced insights into the relational dynamics of code vulnerabilities.
arXiv Detail & Related papers (2024-03-08T02:01:47Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
This paper presents VELVET, a novel ensemble learning approach to locate vulnerable statements in source code.
Our model combines graph-based and sequence-based neural networks to successfully capture the local and global context of a program graph.
VELVET achieves 99.6% and 43.6% top-1 accuracy over synthetic data and real-world data, respectively.
arXiv Detail & Related papers (2021-12-20T22:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.