Task-Driven Discrete Representation Learning
- URL: http://arxiv.org/abs/2506.11511v1
- Date: Fri, 13 Jun 2025 07:12:49 GMT
- Title: Task-Driven Discrete Representation Learning
- Authors: Tung-Long Vuong,
- Abstract summary: We propose a unified framework that explores the usefulness of discrete features in relation to downstream tasks.<n>We provide an additional theoretical analysis of the trade-off between representational capacity and sample complexity.
- Score: 1.604511025616605
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, deep discrete representation learning (DRL) has achieved significant success across various domains. Most DRL frameworks (e.g., the widely used VQ-VAE and its variants) have primarily focused on generative settings, where the quality of a representation is implicitly gauged by the fidelity of its generation. In fact, the goodness of a discrete representation remain ambiguously defined across the literature. In this work, we adopt a practical approach that examines DRL from a task-driven perspective. We propose a unified framework that explores the usefulness of discrete features in relation to downstream tasks, with generation naturally viewed as one possible application. In this context, the properties of discrete representations as well as the way they benefit certain tasks are also relatively understudied. We therefore provide an additional theoretical analysis of the trade-off between representational capacity and sample complexity, shedding light on how discrete representation utilization impacts task performance. Finally, we demonstrate the flexibility and effectiveness of our framework across diverse applications.
Related papers
- Crossing the Reward Bridge: Expanding RL with Verifiable Rewards Across Diverse Domains [92.36624674516553]
Reinforcement learning with verifiable rewards (RLVR) has demonstrated significant success in enhancing mathematical reasoning and coding performance of large language models (LLMs)<n>We investigate the effectiveness and scalability of RLVR across diverse real-world domains including medicine, chemistry, psychology, economics, and education.<n>We utilize a generative scoring technique that yields soft, model-based reward signals to overcome limitations posed by binary verifications.
arXiv Detail & Related papers (2025-03-31T08:22:49Z) - Offline Action-Free Learning of Ex-BMDPs by Comparing Diverse Datasets [87.62730694973696]
This paper introduces CRAFT, a sample-efficient algorithm leveraging differences in controllable feature dynamics across agents to learn representations.<n>We provide theoretical guarantees for CRAFT's performance and demonstrate its feasibility on a toy example.
arXiv Detail & Related papers (2025-03-26T22:05:57Z) - Disentangling Representations through Multi-task Learning [0.0]
We provide experimental and theoretical results guaranteeing the emergence of disentangled representations in agents that optimally solve classification tasks.<n>We experimentally validate these predictions in RNNs trained to multi-task, which learn disentangled representations in the form of continuous attractors.<n>We find that transformers are particularly suited for disentangling representations, which might explain their unique world understanding abilities.
arXiv Detail & Related papers (2024-07-15T21:32:58Z) - Harnessing Discrete Representations For Continual Reinforcement Learning [8.61539229796467]
We investigate the advantages of representing observations as vectors of categorical values within the context of reinforcement learning.
We find that, when compared to traditional continuous representations, world models learned over discrete representations accurately model more of the world with less capacity.
arXiv Detail & Related papers (2023-12-02T18:55:26Z) - Synergies between Disentanglement and Sparsity: Generalization and
Identifiability in Multi-Task Learning [79.83792914684985]
We prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations.
Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem.
arXiv Detail & Related papers (2022-11-26T21:02:09Z) - Learning Task-relevant Representations for Generalization via
Characteristic Functions of Reward Sequence Distributions [63.773813221460614]
Generalization across different environments with the same tasks is critical for successful applications of visual reinforcement learning.
We propose a novel approach, namely Characteristic Reward Sequence Prediction (CRESP), to extract the task-relevant information.
Experiments demonstrate that CRESP significantly improves the performance of generalization on unseen environments.
arXiv Detail & Related papers (2022-05-20T14:52:03Z) - Non-Stationary Representation Learning in Sequential Linear Bandits [22.16801879707937]
We study representation learning for multi-task decision-making in non-stationary environments.
We propose an online algorithm that facilitates efficient decision-making by learning and transferring non-stationary representations in an adaptive fashion.
arXiv Detail & Related papers (2022-01-13T06:13:03Z) - A Free Lunch from the Noise: Provable and Practical Exploration for
Representation Learning [55.048010996144036]
We show that under some noise assumption, we can obtain the linear spectral feature of its corresponding Markov transition operator in closed-form for free.
We propose Spectral Dynamics Embedding (SPEDE), which breaks the trade-off and completes optimistic exploration for representation learning by exploiting the structure of the noise.
arXiv Detail & Related papers (2021-11-22T19:24:57Z) - Reinforcement Learning with Prototypical Representations [114.35801511501639]
Proto-RL is a self-supervised framework that ties representation learning with exploration through prototypical representations.
These prototypes simultaneously serve as a summarization of the exploratory experience of an agent as well as a basis for representing observations.
This enables state-of-the-art downstream policy learning on a set of difficult continuous control tasks.
arXiv Detail & Related papers (2021-02-22T18:56:34Z) - Deep Partial Multi-View Learning [94.39367390062831]
We propose a novel framework termed Cross Partial Multi-View Networks (CPM-Nets)
We fifirst provide a formal defifinition of completeness and versatility for multi-view representation.
We then theoretically prove the versatility of the learned latent representations.
arXiv Detail & Related papers (2020-11-12T02:29:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.