TongSearch-QR: Reinforced Query Reasoning for Retrieval
- URL: http://arxiv.org/abs/2506.11603v2
- Date: Mon, 16 Jun 2025 03:35:12 GMT
- Title: TongSearch-QR: Reinforced Query Reasoning for Retrieval
- Authors: Xubo Qin, Jun Bai, Jiaqi Li, Zixia Jia, Zilong Zheng,
- Abstract summary: We introduce TongSearch QR, a family of small-scale language models for query reasoning and rewriting in reasoning-intensive retrieval.<n>With a novel semi-rule-based reward function, we employ reinforcement learning approaches enabling smaller language models.<n>Experiment results on BRIGHT benchmark show that with BM25 as retrievers, both TongSearch QR-7B and TongSearch QR-1.5B models significantly outperform existing baselines.
- Score: 22.833651162995615
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Traditional information retrieval (IR) methods excel at textual and semantic matching but struggle in reasoning-intensive retrieval tasks that require multi-hop inference or complex semantic understanding between queries and documents. One promising solution is to explicitly rewrite or augment queries using large language models (LLMs) to elicit reasoning-relevant content prior to retrieval. However, the widespread use of large-scale language models like GPT-4 or LLaMA3-70B remains impractical due to their high inference cost and limited deployability in real-world systems. In this work, we introduce TongSearch QR (Previously Known as "TongSearch Reasoner"), a family of small-scale language models for query reasoning and rewriting in reasoning-intensive retrieval. With a novel semi-rule-based reward function, we employ reinforcement learning approaches enabling smaller language models, e,g, Qwen2.5-7B-Instruct and Qwen2.5-1.5B-Instruct, to achieve query reasoning performance rivaling large-scale language models without their prohibitive inference costs. Experiment results on BRIGHT benchmark show that with BM25 as retrievers, both TongSearch QR-7B and TongSearch QR-1.5B models significantly outperform existing baselines, including prompt-based query reasoners and some latest dense retrievers trained for reasoning-intensive retrieval tasks, offering superior adaptability for real-world deployment.
Related papers
- FrugalRAG: Learning to retrieve and reason for multi-hop QA [10.193015391271535]
Large-scale fine-tuning is not needed to improve RAG metrics.<n>Supervised and RL-based fine-tuning can help RAG from the perspective of frugality.
arXiv Detail & Related papers (2025-07-10T11:02:13Z) - ReSearch: Learning to Reason with Search for LLMs via Reinforcement Learning [37.183397387416065]
We propose ReSearch, a framework that trains LLMs to Reason with Search via reinforcement learning.<n>Our approach treats search operations as integral components of the reasoning chain, where when and how to perform searches is guided by text-based thinking.<n>Analysis reveals that ReSearch naturally elicits advanced reasoning capabilities such as reflection and self-correction.
arXiv Detail & Related papers (2025-03-25T09:00:58Z) - Pseudo Relevance Feedback is Enough to Close the Gap Between Small and Large Dense Retrieval Models [29.934928091542375]
Scaling dense retrievers to larger large language model (LLM) backbones has been a dominant strategy for improving their retrieval effectiveness.<n>We introduce PromptPRF, a feature-based pseudo-relevance feedback (PRF) framework that enables small LLM-based dense retrievers to achieve effectiveness comparable to much larger models.
arXiv Detail & Related papers (2025-03-19T04:30:20Z) - CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
We introduce CodeXEmbed, a family of large-scale code embedding models ranging from 400M to 7B parameters.
Our novel training pipeline unifies multiple programming languages and transforms various code-related tasks into a common retrieval framework.
Our 7B model sets a new state-of-the-art (SOTA) in code retrieval, outperforming the previous leading model, Voyage-Code, by over 20% on CoIR benchmark.
arXiv Detail & Related papers (2024-11-19T16:54:45Z) - Generative Pre-trained Ranking Model with Over-parameterization at Web-Scale (Extended Abstract) [73.57710917145212]
Learning to rank is widely employed in web searches to prioritize pertinent webpages based on input queries.
We propose a emphulineGenerative ulineSemi-ulineSupervised ulinePre-trained (GS2P) model to address these challenges.
We conduct extensive offline experiments on both a publicly available dataset and a real-world dataset collected from a large-scale search engine.
arXiv Detail & Related papers (2024-09-25T03:39:14Z) - BRIGHT: A Realistic and Challenging Benchmark for Reasoning-Intensive Retrieval [54.54576644403115]
We introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents.<n>Our dataset consists of 1,384 real-world queries spanning diverse domains, such as economics, psychology, mathematics, and coding.<n>We show that incorporating explicit reasoning about the query improves retrieval performance by up to 12.2 points.
arXiv Detail & Related papers (2024-07-16T17:58:27Z) - Adapting Dual-encoder Vision-language Models for Paraphrased Retrieval [55.90407811819347]
We consider the task of paraphrased text-to-image retrieval where a model aims to return similar results given a pair of paraphrased queries.
We train a dual-encoder model starting from a language model pretrained on a large text corpus.
Compared to public dual-encoder models such as CLIP and OpenCLIP, the model trained with our best adaptation strategy achieves a significantly higher ranking similarity for paraphrased queries.
arXiv Detail & Related papers (2024-05-06T06:30:17Z) - Enhancing Retrieval Processes for Language Generation with Augmented
Queries [0.0]
This research focuses on addressing this issue through Retrieval-Augmented Generation (RAG), a technique that guides models to give accurate responses based on real facts.
To overcome scalability issues, the study explores connecting user queries with sophisticated language models such as BERT and Orca2.
The empirical results indicate a significant improvement in the initial language model's performance under RAG.
arXiv Detail & Related papers (2024-02-06T13:19:53Z) - Retrieval-Generation Synergy Augmented Large Language Models [30.53260173572783]
We propose an iterative retrieval-generation collaborative framework.
We conduct experiments on four question answering datasets, including single-hop QA and multi-hop QA tasks.
arXiv Detail & Related papers (2023-10-08T12:50:57Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
Large-scale retrieval is to recall relevant documents from a huge collection given a query.
Recent retrieval methods based on pre-trained language models (PLM) can be coarsely categorized into either dense-vector or lexicon-based paradigms.
We propose a new learning framework, UnifieR which unifies dense-vector and lexicon-based retrieval in one model with a dual-representing capability.
arXiv Detail & Related papers (2022-05-23T11:01:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.