SceneGram: Conceptualizing and Describing Tangrams in Scene Context
- URL: http://arxiv.org/abs/2506.11631v1
- Date: Fri, 13 Jun 2025 10:02:39 GMT
- Title: SceneGram: Conceptualizing and Describing Tangrams in Scene Context
- Authors: Simeon Junker, Sina Zarrieß,
- Abstract summary: This paper contributes SceneGram, a dataset of human references to tangram shapes placed in different scene contexts.<n>We show that these models do not account for the richness and variability of conceptualizations found in human references.
- Score: 8.883534683127415
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research on reference and naming suggests that humans can come up with very different ways of conceptualizing and referring to the same object, e.g. the same abstract tangram shape can be a "crab", "sink" or "space ship". Another common assumption in cognitive science is that scene context fundamentally shapes our visual perception of objects and conceptual expectations. This paper contributes SceneGram, a dataset of human references to tangram shapes placed in different scene contexts, allowing for systematic analyses of the effect of scene context on conceptualization. Based on this data, we analyze references to tangram shapes generated by multimodal LLMs, showing that these models do not account for the richness and variability of conceptualizations found in human references.
Related papers
- When Does Perceptual Alignment Benefit Vision Representations? [76.32336818860965]
We investigate how aligning vision model representations to human perceptual judgments impacts their usability.
We find that aligning models to perceptual judgments yields representations that improve upon the original backbones across many downstream tasks.
Our results suggest that injecting an inductive bias about human perceptual knowledge into vision models can contribute to better representations.
arXiv Detail & Related papers (2024-10-14T17:59:58Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Intrinsic Physical Concepts Discovery with Object-Centric Predictive
Models [86.25460882547581]
We introduce the PHYsical Concepts Inference NEtwork (PHYCINE), a system that infers physical concepts in different abstract levels without supervision.
We show that object representations containing the discovered physical concepts variables could help achieve better performance in causal reasoning tasks.
arXiv Detail & Related papers (2023-03-03T11:52:21Z) - Hyperbolic Contrastive Learning for Visual Representations beyond
Objects [30.618032825306187]
We focus on learning representations for objects and scenes that preserve the structure among them.
Motivated by the observation that visually similar objects are close in the representation space, we argue that the scenes and objects should instead follow a hierarchical structure.
arXiv Detail & Related papers (2022-12-01T16:58:57Z) - Understanding Cross-modal Interactions in V&L Models that Generate Scene
Descriptions [3.7957452405531256]
This paper explores the potential of a state-of-the-art Vision and Language model, VinVL, to caption images at the scene level.
We show (3) that a small amount of curated data suffices to generate scene descriptions without losing the capability to identify object-level concepts in the scene.
We discuss the parallels between these results and insights from computational and cognitive science research on scene perception.
arXiv Detail & Related papers (2022-11-09T15:33:51Z) - FALCON: Fast Visual Concept Learning by Integrating Images, Linguistic
descriptions, and Conceptual Relations [99.54048050189971]
We present a framework for learning new visual concepts quickly, guided by multiple naturally occurring data streams.
The learned concepts support downstream applications, such as answering questions by reasoning about unseen images.
We demonstrate the effectiveness of our model on both synthetic and real-world datasets.
arXiv Detail & Related papers (2022-03-30T19:45:00Z) - Compositional Scene Representation Learning via Reconstruction: A Survey [48.33349317481124]
Compositional scene representation learning is a task that enables such abilities.
Deep neural networks have been proven to be advantageous in representation learning.
Learning via reconstruction is advantageous because it may utilize massive unlabeled data and avoid costly and laborious data annotation.
arXiv Detail & Related papers (2022-02-15T02:14:05Z) - PTR: A Benchmark for Part-based Conceptual, Relational, and Physical
Reasoning [135.2892665079159]
We introduce a new large-scale diagnostic visual reasoning dataset named PTR.
PTR contains around 70k RGBD synthetic images with ground truth object and part level annotations.
We examine several state-of-the-art visual reasoning models on this dataset and observe that they still make many surprising mistakes.
arXiv Detail & Related papers (2021-12-09T18:59:34Z) - Constellation: Learning relational abstractions over objects for
compositional imagination [64.99658940906917]
We introduce Constellation, a network that learns relational abstractions of static visual scenes.
This work is a first step in the explicit representation of visual relationships and using them for complex cognitive procedures.
arXiv Detail & Related papers (2021-07-23T11:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.