Real-Time Feedback and Benchmark Dataset for Isometric Pose Evaluation
- URL: http://arxiv.org/abs/2506.11774v1
- Date: Fri, 13 Jun 2025 13:33:59 GMT
- Title: Real-Time Feedback and Benchmark Dataset for Isometric Pose Evaluation
- Authors: Abhishek Jaiswal, Armeet Singh Luthra, Purav Jangir, Bhavya Garg, Nisheeth Srivastava,
- Abstract summary: We present a real-time feedback system for assessing poses.<n>Our contributions include the release of the largest multiclass isometric exercise video dataset to date.<n>Results enhance the feasibility of intelligent and personalized exercise training systems for home workouts.
- Score: 1.6358813089575626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Isometric exercises appeal to individuals seeking convenience, privacy, and minimal dependence on equipments. However, such fitness training is often overdependent on unreliable digital media content instead of expert supervision, introducing serious risks, including incorrect posture, injury, and disengagement due to lack of corrective feedback. To address these challenges, we present a real-time feedback system for assessing isometric poses. Our contributions include the release of the largest multiclass isometric exercise video dataset to date, comprising over 3,600 clips across six poses with correct and incorrect variations. To support robust evaluation, we benchmark state-of-the-art models-including graph-based networks-on this dataset and introduce a novel three-part metric that captures classification accuracy, mistake localization, and model confidence. Our results enhance the feasibility of intelligent and personalized exercise training systems for home workouts. This expert-level diagnosis, delivered directly to the users, also expands the potential applications of these systems to rehabilitation, physiotherapy, and various other fitness disciplines that involve physical motion.
Related papers
- PosePilot: An Edge-AI Solution for Posture Correction in Physical Exercises [0.0]
This work presents PosePilot, a novel system that pose recognition with real-time personalized corrective feedback.<n>Designed for edge devices, PosePilot can be extended to various at-home and outdoor exercises.
arXiv Detail & Related papers (2025-05-25T15:13:54Z) - DeProPose: Deficiency-Proof 3D Human Pose Estimation via Adaptive Multi-View Fusion [57.83515140886807]
We introduce the task of Deficiency-Aware 3D Pose Estimation.<n>DeProPose is a flexible method that simplifies the network architecture to reduce training complexity.<n>We have developed a novel 3D human pose estimation dataset.
arXiv Detail & Related papers (2025-02-23T03:22:54Z) - A Medical Low-Back Pain Physical Rehabilitation Dataset for Human Body Movement Analysis [0.6990493129893111]
This article addresses four challenges to address and propose a medical dataset of clinical patients carrying out low back-pain rehabilitation exercises.<n>The dataset includes 3D Kinect skeleton positions and orientations, RGB videos, 2D skeleton data, and medical annotations to assess the correctness, and error classification and localisation of body part and timespan.
arXiv Detail & Related papers (2024-06-29T19:50:06Z) - Test-Time Adaptation for Combating Missing Modalities in Egocentric Videos [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.<n>We propose a novel approach to address this issue at test time without requiring retraining.<n>MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - Using Learnable Physics for Real-Time Exercise Form Recommendations [2.1548132286330453]
We present an algorithmic pipeline that can diagnose problems in exercise techniques and offer corrective recommendations.
We use MediaPipe for pose recognition, count repetitions using peak-prominence detection, and use a learnable physics simulator to track motion evolution.
arXiv Detail & Related papers (2023-10-11T06:11:11Z) - Design, Development, and Evaluation of an Interactive Personalized
Social Robot to Monitor and Coach Post-Stroke Rehabilitation Exercises [68.37238218842089]
We develop an interactive social robot exercise coaching system for personalized rehabilitation.
This system integrates a neural network model with a rule-based model to automatically monitor and assess patients' rehabilitation exercises.
Our system can adapt to new participants and achieved 0.81 average performance to assess their exercises, which is comparable to the experts' agreement level.
arXiv Detail & Related papers (2023-05-12T17:37:04Z) - 3D Pose Based Feedback for Physical Exercises [87.35086507661227]
We introduce a learning-based framework that identifies the mistakes made by a user.
Our framework does not rely on hard-coded rules, instead, it learns them from data.
Our approach yields 90.9% mistake identification accuracy and successfully corrects 94.2% of the mistakes.
arXiv Detail & Related papers (2022-08-05T16:15:02Z) - Domain Knowledge-Informed Self-Supervised Representations for Workout
Form Assessment [12.040334568268445]
We propose to learn exercise-specific representations from unlabeled samples.
In particular, our domain knowledge-informed self-supervised approaches exploit the harmonic motion of the exercise actions.
We show that our self-supervised representations outperform off-the-shelf 2D- and 3D-pose estimators.
arXiv Detail & Related papers (2022-02-28T18:40:02Z) - Vogtareuth Rehab Depth Datasets: Benchmark for Marker-less Posture
Estimation in Rehabilitation [55.41644538483948]
We propose two rehabilitation-specific pose datasets containing depth images and 2D pose information of patients performing rehab exercises.
We use a state-of-the-art marker-less posture estimation model which is trained on a non-rehab benchmark dataset.
We show that our dataset can be used to train pose models to detect rehab-specific complex postures.
arXiv Detail & Related papers (2021-08-23T16:18:26Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
Generalizability of human pose estimation models developed using supervision on large-scale in-studio datasets remains questionable.
We propose a novel kinematic-structure-preserved unsupervised 3D pose estimation framework, which is not restrained by any paired or unpaired weak supervisions.
Our proposed model employs three consecutive differentiable transformations named as forward-kinematics, camera-projection and spatial-map transformation.
arXiv Detail & Related papers (2020-06-24T23:56:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.