Vision-based Lifting of 2D Object Detections for Automated Driving
- URL: http://arxiv.org/abs/2506.11839v1
- Date: Fri, 13 Jun 2025 14:40:12 GMT
- Title: Vision-based Lifting of 2D Object Detections for Automated Driving
- Authors: Hendrik Königshof, Kun Li, Christoph Stiller,
- Abstract summary: We propose a pipeline which lifts the results of existing vision-based 2D algorithms to 3D detections using only cameras.<n>To the best of our knowledge, we are the first using a 2D CNN to process the point cloud for each 2D detection to keep the computational effort as low as possible.
- Score: 8.321333802704446
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-based 3D object detection is an inevitable part of autonomous driving because cheap onboard cameras are already available in most modern cars. Because of the accurate depth information, currently, most state-of-the-art 3D object detectors heavily rely on LiDAR data. In this paper, we propose a pipeline which lifts the results of existing vision-based 2D algorithms to 3D detections using only cameras as a cost-effective alternative to LiDAR. In contrast to existing approaches, we focus not only on cars but on all types of road users. To the best of our knowledge, we are the first using a 2D CNN to process the point cloud for each 2D detection to keep the computational effort as low as possible. Our evaluation on the challenging KITTI 3D object detection benchmark shows results comparable to state-of-the-art image-based approaches while having a runtime of only a third.
Related papers
- 2.5D Object Detection for Intelligent Roadside Infrastructure [37.07785188366053]
We introduce a 2.5D object detection framework for infrastructure roadside-mounted cameras.<n>We employ a prediction approach to detect ground planes of vehicles as parallelograms in the image frame.<n>Our results show high detection accuracy, strong cross-viewpoint generalization, and robustness to diverse lighting and weather conditions.
arXiv Detail & Related papers (2025-07-04T13:16:59Z) - HeightFormer: A Semantic Alignment Monocular 3D Object Detection Method from Roadside Perspective [11.841338298700421]
We propose a novel 3D object detection framework integrating Spatial Former and Voxel Pooling Former to enhance 2D-to-3D projection based on height estimation.
Experiments were conducted using the Rope3D and DAIR-V2X-I dataset, and the results demonstrated the outperformance of the proposed algorithm in the detection of both vehicles and cyclists.
arXiv Detail & Related papers (2024-10-10T09:37:33Z) - Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
We propose a balanced approach that combines the advantages of monocular and point cloud-based 3D detection.
Our method requires only a small number of 3D points, that can be obtained from a low-cost, low-resolution sensor.
The accuracy of 3D detection improves by 20% compared to the state-of-the-art monocular detection methods.
arXiv Detail & Related papers (2024-04-10T03:54:53Z) - 3D Data Augmentation for Driving Scenes on Camera [50.41413053812315]
We propose a 3D data augmentation approach termed Drive-3DAug, aiming at augmenting the driving scenes on camera in the 3D space.
We first utilize Neural Radiance Field (NeRF) to reconstruct the 3D models of background and foreground objects.
Then, augmented driving scenes can be obtained by placing the 3D objects with adapted location and orientation at the pre-defined valid region of backgrounds.
arXiv Detail & Related papers (2023-03-18T05:51:05Z) - FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection [78.00922683083776]
It is non-trivial to make a general adapted 2D detector work in this 3D task.
In this technical report, we study this problem with a practice built on fully convolutional single-stage detector.
Our solution achieves 1st place out of all the vision-only methods in the nuScenes 3D detection challenge of NeurIPS 2020.
arXiv Detail & Related papers (2021-04-22T09:35:35Z) - YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection [6.5702792909006735]
YOLOStereo3D is trained on one single GPU and runs at more than ten fps.
It demonstrates performance comparable to state-of-the-art stereo 3D detection frameworks without usage of LiDAR data.
arXiv Detail & Related papers (2021-03-17T03:43:54Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - Ground-aware Monocular 3D Object Detection for Autonomous Driving [6.5702792909006735]
Estimating the 3D position and orientation of objects in the environment with a single RGB camera is a challenging task for low-cost urban autonomous driving and mobile robots.
Most of the existing algorithms are based on the geometric constraints in 2D-3D correspondence, which stems from generic 6D object pose estimation.
We introduce a novel neural network module to fully utilize such application-specific priors in the framework of deep learning.
arXiv Detail & Related papers (2021-02-01T08:18:24Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Single-Shot 3D Detection of Vehicles from Monocular RGB Images via
Geometry Constrained Keypoints in Real-Time [6.82446891805815]
We propose a novel 3D single-shot object detection method for detecting vehicles in monocular RGB images.
Our approach lifts 2D detections to 3D space by predicting additional regression and classification parameters.
We test our approach on different datasets for autonomous driving and evaluate it using the challenging KITTI 3D Object Detection and the novel nuScenes Object Detection benchmarks.
arXiv Detail & Related papers (2020-06-23T15:10:19Z) - End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection [62.34374949726333]
Pseudo-LiDAR (PL) has led to a drastic reduction in the accuracy gap between methods based on LiDAR sensors and those based on cheap stereo cameras.
PL combines state-of-the-art deep neural networks for 3D depth estimation with those for 3D object detection by converting 2D depth map outputs to 3D point cloud inputs.
We introduce a new framework based on differentiable Change of Representation (CoR) modules that allow the entire PL pipeline to be trained end-to-end.
arXiv Detail & Related papers (2020-04-07T02:18:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.