Multiple Object Tracking in Video SAR: A Benchmark and Tracking Baseline
- URL: http://arxiv.org/abs/2506.12105v1
- Date: Fri, 13 Jun 2025 06:12:25 GMT
- Title: Multiple Object Tracking in Video SAR: A Benchmark and Tracking Baseline
- Authors: Haoxiang Chen, Wei Zhao, Rufei Zhang, Nannan Li, Dongjin Li,
- Abstract summary: Video synthetic aperture radar (Video SAR) is used for multi-object tracking.<n>Doppler shifts induced by target motion result in artifacts that are easily mistaken for shadows.<n>A major limitation in this field is the lack of public benchmark datasets for standardized algorithm evaluation.
- Score: 6.467005601813546
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of multi-object tracking using video synthetic aperture radar (Video SAR), Doppler shifts induced by target motion result in artifacts that are easily mistaken for shadows caused by static occlusions. Moreover, appearance changes of the target caused by Doppler mismatch may lead to association failures and disrupt trajectory continuity. A major limitation in this field is the lack of public benchmark datasets for standardized algorithm evaluation. To address the above challenges, we collected and annotated 45 video SAR sequences containing moving targets, and named the Video SAR MOT Benchmark (VSMB). Specifically, to mitigate the effects of trailing and defocusing in moving targets, we introduce a line feature enhancement mechanism that emphasizes the positive role of motion shadows and reduces false alarms induced by static occlusions. In addition, to mitigate the adverse effects of target appearance variations, we propose a motion-aware clue discarding mechanism that substantially improves tracking robustness in Video SAR. The proposed model achieves state-of-the-art performance on the VSMB, and the dataset and model are released at https://github.com/softwarePupil/VSMB.
Related papers
- Tracking the Unstable: Appearance-Guided Motion Modeling for Robust Multi-Object Tracking in UAV-Captured Videos [58.156141601478794]
Multi-object tracking (UAVT) aims to track multiple objects while maintaining consistent identities across frames of a given video.<n>Existing methods typically model motion cues and appearance separately, overlooking their interplay and resulting in suboptimal tracking performance.<n>We propose AMOT, which exploits appearance and motion cues through two key components: an Appearance-Motion Consistency (AMC) matrix and a Motion-aware Track Continuation (MTC) module.
arXiv Detail & Related papers (2025-08-03T12:06:47Z) - Motion-Aware Concept Alignment for Consistent Video Editing [57.08108545219043]
We introduce MoCA-Video (Motion-Aware Concept Alignment in Video), a training-free framework bridging the gap between image-domain semantic mixing and video.<n>Given a generated video and a user-provided reference image, MoCA-Video injects the semantic features of the reference image into a specific object within the video.<n>We evaluate MoCA's performance using the standard SSIM, image-level LPIPS, temporal LPIPS, and introduce a novel metric CASS (Conceptual Alignment Shift Score) to evaluate the consistency and effectiveness of the visual shifts between the source prompt and the modified video frames
arXiv Detail & Related papers (2025-06-01T13:28:04Z) - A Simple Detector with Frame Dynamics is a Strong Tracker [43.912410355089634]
Infrared object tracking plays a crucial role in Anti-Unmanned Aerial Vehicle (Anti-UAV) applications.<n>Existing trackers often depend on cropped template regions and have limited motion modeling capabilities.<n>We propose a simple yet effective infrared tiny-object tracker that enhances tracking performance by integrating global detection and motion-aware learning.
arXiv Detail & Related papers (2025-05-08T03:16:03Z) - SOTA: Spike-Navigated Optimal TrAnsport Saliency Region Detection in Composite-bias Videos [50.51658520045165]
Spike-d Optimal TrAnsport Saliency Region Detection (SOTA) is a framework that leverages the strengths of spike cameras while mitigating biases in both spatial and temporal dimensions.<n>Our method introduces Spike-based Micro-debias (SM) to capture subtle frame-to-frame variations.<n>SOTA refines predictions by reducing inconsistencies across diverse conditions.
arXiv Detail & Related papers (2025-05-01T08:30:40Z) - MATE: Motion-Augmented Temporal Consistency for Event-based Point Tracking [58.719310295870024]
This paper presents an event-based framework for tracking any point.<n>To resolve ambiguities caused by event sparsity, a motion-guidance module incorporates kinematic vectors into the local matching process.<n>The method improves the $Survival_50$ metric by 17.9% over event-only tracking of any point baseline.
arXiv Detail & Related papers (2024-12-02T09:13:29Z) - DATAP-SfM: Dynamic-Aware Tracking Any Point for Robust Structure from Motion in the Wild [85.03973683867797]
This paper proposes a concise, elegant, and robust pipeline to estimate smooth camera trajectories and obtain dense point clouds for casual videos in the wild.
We show that the proposed method achieves state-of-the-art performance in terms of camera pose estimation even in complex dynamic challenge scenes.
arXiv Detail & Related papers (2024-11-20T13:01:16Z) - SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
This paper addresses the problem of multi-object tracking in Unmanned Aerial Vehicle (UAV) footage.
It plays a critical role in various UAV applications, including traffic monitoring systems and real-time suspect tracking by the police.
We propose a new tracking strategy, which initiates the tracking of target objects from low-confidence detections.
arXiv Detail & Related papers (2024-10-26T05:09:20Z) - Ego-Motion Aware Target Prediction Module for Robust Multi-Object Tracking [2.7898966850590625]
We introduce a novel KF-based prediction module called Ego-motion Aware Target Prediction (EMAP)
Our proposed method decouples the impact of camera rotational and translational velocity from the object trajectories by reformulating the Kalman Filter.
EMAP remarkably drops the number of identity switches (IDSW) of OC-SORT and Deep OC-SORT by 73% and 21%, respectively.
arXiv Detail & Related papers (2024-04-03T23:24:25Z) - Implicit Motion Handling for Video Camouflaged Object Detection [60.98467179649398]
We propose a new video camouflaged object detection (VCOD) framework.
It can exploit both short-term and long-term temporal consistency to detect camouflaged objects from video frames.
arXiv Detail & Related papers (2022-03-14T17:55:41Z) - Motion-Excited Sampler: Video Adversarial Attack with Sparked Prior [63.11478060678794]
We propose an effective motion-excited sampler to obtain motion-aware noise prior.
By using the sparked prior in gradient estimation, we can successfully attack a variety of video classification models with fewer number of queries.
arXiv Detail & Related papers (2020-03-17T10:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.