Unsupervised Document and Template Clustering using Multimodal Embeddings
- URL: http://arxiv.org/abs/2506.12116v1
- Date: Fri, 13 Jun 2025 14:07:44 GMT
- Title: Unsupervised Document and Template Clustering using Multimodal Embeddings
- Authors: Phillipe R. Sampaio, Helene Maxcici,
- Abstract summary: This paper investigates a novel approach to unsupervised document clustering by leveraging multimodal embeddings as input.<n>Our method aims to achieve a finer-grained document understanding by grouping documents at the type level and distinguishing between different templates.<n>We evaluated the effectiveness of this approach using embeddings generated by several state-of-the-art pretrained multimodal models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates a novel approach to unsupervised document clustering by leveraging multimodal embeddings as input to traditional clustering algorithms such as $k$-Means and DBSCAN. Our method aims to achieve a finer-grained document understanding by not only grouping documents at the type level (e.g., invoices, purchase orders), but also distinguishing between different templates within the same document category. This is achieved by using embeddings that capture textual content, layout information, and visual features of documents. We evaluated the effectiveness of this approach using embeddings generated by several state-of-the-art pretrained multimodal models, including SBERT, LayoutLMv1, LayoutLMv3, DiT, Donut, and ColPali. Our findings demonstrate the potential of multimodal embeddings to significantly enhance document clustering, offering benefits for various applications in intelligent document processing, document layout analysis, and unsupervised document classification. This work provides valuable insight into the advantages and limitations of different multimodal models for this task and opens new avenues for future research to understand and organize document collections.
Related papers
- Docopilot: Improving Multimodal Models for Document-Level Understanding [87.60020625241178]
We present a high-quality document-level dataset, Doc-750K, designed to support in-depth understanding of multimodal documents.<n>This dataset includes diverse document structures, extensive cross-page dependencies, and real question-answer pairs derived from the original documents.<n>Building on the dataset, we develop a native multimodal model, Docopilot, which can accurately handle document-level dependencies without relying on RAG.
arXiv Detail & Related papers (2025-07-19T16:03:34Z) - Relation-Rich Visual Document Generator for Visual Information Extraction [12.4941229258054]
We propose a Relation-rIch visual Document GEnerator (RIDGE) that addresses these limitations through a two-stage approach.<n>Our method significantly enhances the performance of document understanding models on various VIE benchmarks.
arXiv Detail & Related papers (2025-04-14T19:19:26Z) - MMDocIR: Benchmarking Multi-Modal Retrieval for Long Documents [26.39534684408116]
This work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval.<n>The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels.
arXiv Detail & Related papers (2025-01-15T14:30:13Z) - Unified Multimodal Interleaved Document Representation for Retrieval [57.65409208879344]
We propose a method that holistically embeds documents interleaved with multiple modalities.<n>We merge the representations of segmented passages into one single document representation.<n>We show that our approach substantially outperforms relevant baselines.
arXiv Detail & Related papers (2024-10-03T17:49:09Z) - Leveraging Collection-Wide Similarities for Unsupervised Document Structure Extraction [61.998789448260005]
We propose to identify the typical structure of document within a collection.
We abstract over arbitrary header paraphrases, and ground each topic to respective document locations.
We develop an unsupervised graph-based method which leverages both inter- and intra-document similarities.
arXiv Detail & Related papers (2024-02-21T16:22:21Z) - DocumentNet: Bridging the Data Gap in Document Pre-Training [78.01647768018485]
We propose a method to collect massive-scale and weakly labeled data from the web to benefit the training of VDER models.
The collected dataset, named DocumentNet, does not depend on specific document types or entity sets.
Experiments on a set of broadly adopted VDER tasks show significant improvements when DocumentNet is incorporated into the pre-training.
arXiv Detail & Related papers (2023-06-15T08:21:15Z) - Mining both Commonality and Specificity from Multiple Documents for
Multi-Document Summarization [1.4629756274247374]
The multi-document summarization task requires the designed summarizer to generate a short text that covers the important information of original documents.
This paper proposes a multi-document summarization approach based on hierarchical clustering of documents.
arXiv Detail & Related papers (2023-03-05T14:25:05Z) - Large-Scale Multi-Document Summarization with Information Extraction and
Compression [31.601707033466766]
We develop an abstractive summarization framework independent of labeled data for multiple heterogeneous documents.
Our framework processes documents telling different stories instead of documents on the same topic.
Our experiments demonstrate that our framework outperforms current state-of-the-art methods in this more generic setting.
arXiv Detail & Related papers (2022-05-01T19:49:15Z) - Unified Pretraining Framework for Document Understanding [52.224359498792836]
We present UDoc, a new unified pretraining framework for document understanding.
UDoc is designed to support most document understanding tasks, extending the Transformer to take multimodal embeddings as input.
An important feature of UDoc is that it learns a generic representation by making use of three self-supervised losses.
arXiv Detail & Related papers (2022-04-22T21:47:04Z) - Multi-View Document Representation Learning for Open-Domain Dense
Retrieval [87.11836738011007]
This paper proposes a multi-view document representation learning framework.
It aims to produce multi-view embeddings to represent documents and enforce them to align with different queries.
Experiments show our method outperforms recent works and achieves state-of-the-art results.
arXiv Detail & Related papers (2022-03-16T03:36:38Z) - Towards a Multi-modal, Multi-task Learning based Pre-training Framework
for Document Representation Learning [5.109216329453963]
We introduce Document Topic Modelling and Document Shuffle Prediction as novel pre-training tasks.
We utilize the Longformer network architecture as the backbone to encode the multi-modal information from multi-page documents in an end-to-end fashion.
arXiv Detail & Related papers (2020-09-30T05:39:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.