Graph Semi-Supervised Learning for Point Classification on Data Manifolds
- URL: http://arxiv.org/abs/2506.12197v1
- Date: Fri, 13 Jun 2025 19:52:54 GMT
- Title: Graph Semi-Supervised Learning for Point Classification on Data Manifolds
- Authors: Caio F. Deberaldini Netto, Zhiyang Wang, Luana Ruiz,
- Abstract summary: We propose a graph semi-supervised learning framework for classification tasks on data manifold.<n>Motivated by the manifold hypothesis, we model data as points sampled from a low-dimensional $mathcalM subset mathbbRF$.<n>We show that, under uniform sampling from $mathcalM$, the generalization gap of the semi-supervised task diminishes with increasing graph size.
- Score: 13.02854405679453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a graph semi-supervised learning framework for classification tasks on data manifolds. Motivated by the manifold hypothesis, we model data as points sampled from a low-dimensional manifold $\mathcal{M} \subset \mathbb{R}^F$. The manifold is approximated in an unsupervised manner using a variational autoencoder (VAE), where the trained encoder maps data to embeddings that represent their coordinates in $\mathbb{R}^F$. A geometric graph is constructed with Gaussian-weighted edges inversely proportional to distances in the embedding space, transforming the point classification problem into a semi-supervised node classification task on the graph. This task is solved using a graph neural network (GNN). Our main contribution is a theoretical analysis of the statistical generalization properties of this data-to-manifold-to-graph pipeline. We show that, under uniform sampling from $\mathcal{M}$, the generalization gap of the semi-supervised task diminishes with increasing graph size, up to the GNN training error. Leveraging a training procedure which resamples a slightly larger graph at regular intervals during training, we then show that the generalization gap can be reduced even further, vanishing asymptotically. Finally, we validate our findings with numerical experiments on image classification benchmarks, demonstrating the empirical effectiveness of our approach.
Related papers
- Generalization of Geometric Graph Neural Networks with Lipschitz Loss Functions [84.01980526069075]
We study the generalization capabilities of geometric graph neural networks (GNNs)<n>We prove a generalization gap between the optimal empirical risk and the optimal statistical risk of this GNN.<n>We verify this theoretical result with experiments on multiple real-world datasets.
arXiv Detail & Related papers (2024-09-08T18:55:57Z) - Learning to Approximate Adaptive Kernel Convolution on Graphs [4.434835769977399]
We propose a diffusion learning framework, where the range of feature aggregation is controlled by the scale of a diffusion kernel.
Our model is tested on various standard for node-wise classification for the state-of-the-art datasets performance.
It is also validated on a real-world brain network data for graph classifications to demonstrate its practicality for Alzheimer classification.
arXiv Detail & Related papers (2024-01-22T10:57:11Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
We study the relationship between a graph neural network (GNN) and a manifold neural network (MNN) when the graph is constructed from a set of points sampled from the manifold.
We prove non-asymptotic error bounds showing that convolutional filters and neural networks on these graphs converge to convolutional filters and neural networks on the continuous manifold.
arXiv Detail & Related papers (2023-05-29T08:27:17Z) - From Spectral Graph Convolutions to Large Scale Graph Convolutional
Networks [0.0]
Graph Convolutional Networks (GCNs) have been shown to be a powerful concept that has been successfully applied to a large variety of tasks.
We study the theory that paved the way to the definition of GCN, including related parts of classical graph theory.
arXiv Detail & Related papers (2022-07-12T16:57:08Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Graph Convolution for Semi-Supervised Classification: Improved Linear
Separability and Out-of-Distribution Generalization [3.308743964406687]
A new class of learning models has emerged that relies, at its most basic level, on classifying the data after first applying a graph convolution.
We show that graph convolution extends the regime in which the data is linearly separable by a factor of roughly $1/sqrtD$.
arXiv Detail & Related papers (2021-02-13T17:46:57Z) - Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for
Large Eigengaps of Dense Graphs and Hypergraphs [0.0]
Graph Convolutional Networks (GCNs) have proven to be successful tools for semi-supervised classification on graph-based datasets.
We propose a new GCN variant whose three-part filter space is targeted at dense graphs.
arXiv Detail & Related papers (2020-08-03T08:48:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.