Investigating the Effects of Cognitive Biases in Prompts on Large Language Model Outputs
- URL: http://arxiv.org/abs/2506.12338v1
- Date: Sat, 14 Jun 2025 04:18:34 GMT
- Title: Investigating the Effects of Cognitive Biases in Prompts on Large Language Model Outputs
- Authors: Yan Sun, Stanley Kok,
- Abstract summary: This paper investigates the influence of cognitive biases on Large Language Models (LLMs) outputs.<n> cognitive biases, such as confirmation and availability biases, can distort user inputs through prompts.
- Score: 3.7302076138352205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates the influence of cognitive biases on Large Language Models (LLMs) outputs. Cognitive biases, such as confirmation and availability biases, can distort user inputs through prompts, potentially leading to unfaithful and misleading outputs from LLMs. Using a systematic framework, our study introduces various cognitive biases into prompts and assesses their impact on LLM accuracy across multiple benchmark datasets, including general and financial Q&A scenarios. The results demonstrate that even subtle biases can significantly alter LLM answer choices, highlighting a critical need for bias-aware prompt design and mitigation strategy. Additionally, our attention weight analysis highlights how these biases can alter the internal decision-making processes of LLMs, affecting the attention distribution in ways that are associated with output inaccuracies. This research has implications for Al developers and users in enhancing the robustness and reliability of Al applications in diverse domains.
Related papers
- Addressing Bias in LLMs: Strategies and Application to Fair AI-based Recruitment [49.81946749379338]
This work seeks to analyze the capacity of Transformers-based systems to learn demographic biases present in the data.<n>We propose a privacy-enhancing framework to reduce gender information from the learning pipeline as a way to mitigate biased behaviors in the final tools.
arXiv Detail & Related papers (2025-06-13T15:29:43Z) - Cognitive Debiasing Large Language Models for Decision-Making [71.2409973056137]
Large language models (LLMs) have shown potential in supporting decision-making applications.<n>We propose a cognitive debiasing approach, self-adaptive cognitive debiasing (SACD)<n>Our method follows three sequential steps -- bias determination, bias analysis, and cognitive debiasing -- to iteratively mitigate potential cognitive biases in prompts.
arXiv Detail & Related papers (2025-04-05T11:23:05Z) - Investigating the Impact of LLM Personality on Cognitive Bias Manifestation in Automated Decision-Making Tasks [4.65004369765875]
Personality traits play a crucial role in either amplifying or reducing biases.<n>Conscientiousness and Agreeableness may generally enhance the efficacy of bias mitigation strategies.
arXiv Detail & Related papers (2025-02-20T03:15:54Z) - Cognitive Biases in Large Language Models for News Recommendation [68.90354828533535]
This paper explores the potential impact of cognitive biases on large language models (LLMs) based news recommender systems.
We discuss strategies to mitigate these biases through data augmentation, prompt engineering and learning algorithms aspects.
arXiv Detail & Related papers (2024-10-03T18:42:07Z) - Justice or Prejudice? Quantifying Biases in LLM-as-a-Judge [84.34545223897578]
Despite their excellence in many domains, potential issues are under-explored, undermining their reliability and the scope of their utility.
We identify 12 key potential biases and propose a new automated bias quantification framework-CALM- which quantifies and analyzes each type of bias in LLM-as-a-Judge.
Our work highlights the need for stakeholders to address these issues and remind users to exercise caution in LLM-as-a-Judge applications.
arXiv Detail & Related papers (2024-10-03T17:53:30Z) - How Susceptible are LLMs to Influence in Prompts? [6.644673474240519]
Large Language Models (LLMs) are highly sensitive to prompts, including additional context provided therein.
We study how an LLM's response to multiple-choice questions changes when the prompt includes a prediction and explanation from another model.
Our findings reveal that models are strongly influenced, and when explanations are provided they are swayed irrespective of the quality of the explanation.
arXiv Detail & Related papers (2024-08-17T17:40:52Z) - Balancing Rigor and Utility: Mitigating Cognitive Biases in Large Language Models for Multiple-Choice Questions [0.46873264197900916]
We show that certain cognitive biases can enhance decision-making efficiency through rational deviations and shortcuts.<n>By introducing moderation and an abstention option, we reduce error rates, improve decision accuracy, and optimize decision rates.<n>This approach offers a novel way to leverage cognitive biases to improve the practical utility of large language models.
arXiv Detail & Related papers (2024-06-16T16:25:22Z) - Evaluating Interventional Reasoning Capabilities of Large Language Models [58.52919374786108]
Large language models (LLMs) are used to automate decision-making tasks.<n>In this paper, we evaluate whether LLMs can accurately update their knowledge of a data-generating process in response to an intervention.<n>We create benchmarks that span diverse causal graphs (e.g., confounding, mediation) and variable types.<n>These benchmarks allow us to isolate the ability of LLMs to accurately predict changes resulting from their ability to memorize facts or find other shortcuts.
arXiv Detail & Related papers (2024-04-08T14:15:56Z) - Towards detecting unanticipated bias in Large Language Models [1.4589372436314496]
Large Language Models (LLMs) have exhibited fairness issues similar to those in previous machine learning systems.
This research focuses on analyzing and quantifying these biases in training data and their impact on the decisions of these models.
arXiv Detail & Related papers (2024-04-03T11:25:20Z) - Debiasing Multimodal Large Language Models [61.6896704217147]
Large Vision-Language Models (LVLMs) have become indispensable tools in computer vision and natural language processing.
Our investigation reveals a noteworthy bias in the generated content, where the output is primarily influenced by the underlying Large Language Models (LLMs) prior to the input image.
To rectify these biases and redirect the model's focus toward vision information, we introduce two simple, training-free strategies.
arXiv Detail & Related papers (2024-03-08T12:35:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.