Bridging the Digital Divide: Small Language Models as a Pathway for Physics and Photonics Education in Underdeveloped Regions
- URL: http://arxiv.org/abs/2506.12403v2
- Date: Sat, 19 Jul 2025 15:03:53 GMT
- Title: Bridging the Digital Divide: Small Language Models as a Pathway for Physics and Photonics Education in Underdeveloped Regions
- Authors: Asghar Ghorbani, Hanieh Fattahi,
- Abstract summary: This article explores how Small Language Models (SLMs)-compact, AI-powered tools that can run offline on low-power devices, offer a scalable solution.<n>By acting as virtual tutors, enabling native-language instruction, and supporting interactive learning, SLMs can help address the shortage of trained educators and laboratory access.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Limited infrastructure, scarce educational resources, and unreliable internet access often hinder physics and photonics education in underdeveloped regions. These barriers create deep inequities in Science, Technology, Engineering, and Mathematics (STEM) education. This article explores how Small Language Models (SLMs)-compact, AI-powered tools that can run offline on low-power devices, offering a scalable solution. By acting as virtual tutors, enabling native-language instruction, and supporting interactive learning, SLMs can help address the shortage of trained educators and laboratory access. By narrowing the digital divide through targeted investment in AI technologies, SLMs present a scalable and inclusive solution to advance STEM education and foster scientific empowerment in marginalized communities.
Related papers
- AI-Powered Math Tutoring: Platform for Personalized and Adaptive Education [0.0]
We introduce a novel multi-agent AI tutoring platform that combines adaptive and personalized feedback, structured course generation, and textbook knowledge retrieval.<n>This system allows students to learn new topics while identifying and targeting their weaknesses, revise for exams effectively, and practice on an unlimited number of personalized exercises.
arXiv Detail & Related papers (2025-07-14T20:35:16Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - Large Language Models for Education: A Survey and Outlook [69.02214694865229]
We systematically review the technological advancements in each perspective, organize related datasets and benchmarks, and identify the risks and challenges associated with deploying LLMs in education.
Our survey aims to provide a comprehensive technological picture for educators, researchers, and policymakers to harness the power of LLMs to revolutionize educational practices and foster a more effective personalized learning environment.
arXiv Detail & Related papers (2024-03-26T21:04:29Z) - Taking the Next Step with Generative Artificial Intelligence: The Transformative Role of Multimodal Large Language Models in Science Education [13.87944568193996]
Multimodal Large Language Models (MLLMs) are capable of processing multimodal data including text, sound, and visual inputs.
This paper explores the transformative role of MLLMs in central aspects of science education by presenting exemplary innovative learning scenarios.
arXiv Detail & Related papers (2024-01-01T18:11:43Z) - Adapting Large Language Models for Education: Foundational Capabilities, Potentials, and Challenges [60.62904929065257]
Large language models (LLMs) offer possibility for resolving this issue by comprehending individual requests.
This paper reviews the recently emerged LLM research related to educational capabilities, including mathematics, writing, programming, reasoning, and knowledge-based question answering.
arXiv Detail & Related papers (2023-12-27T14:37:32Z) - A Survey on Brain-Inspired Deep Learning via Predictive Coding [85.93245078403875]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.<n>PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Large Language Models Humanize Technology [6.127963013089406]
Large Language Models (LLMs) have made rapid progress in recent months and weeks.
This has sparked concerns about aligning these models with human values, their impact on labor markets, and the potential need for regulation.
We argue that LLMs exhibit emergent abilities to humanize technology more effectively than previous technologies.
arXiv Detail & Related papers (2023-05-09T16:05:36Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Photonics for artificial intelligence and neuromorphic computing [52.77024349608834]
Photonic integrated circuits have enabled ultrafast artificial neural networks.
Photonic neuromorphic systems offer sub-nanosecond latencies.
These systems could address the growing demand for machine learning and artificial intelligence.
arXiv Detail & Related papers (2020-10-30T21:41:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.